在上一篇文章【点云处理】点云法向量估计及其加速(4)中我们尝试对pcl自带的KDTree的k近邻搜索过程使用OpenMP加速,效果比较明显,有将近1倍的提速。在这篇文章中我们暂时放弃pcl自带的KDTree,转而使用另一大杀器nanflann库提供的KDTree。nanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的KD树。nanoflann 算法对fastann进行了改进,效率以及内存使用等方面都进行了优化,而且代码十分轻量级且开源。nanoflann不需要编译或安装,你只需要在你的代码中加入#include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include "KDTreeTableAdaptor.h"
-
- int main(int argc, char** argv) {
- ros::init(argc, argv, "n_lidar_gpu_normal");
- ros::NodeHandle node;
- pcl::PointCloud
::Ptr cloud(new pcl::PointCloud) ; -
- const boost::function<void (const boost::shared_ptr
const>&)> callback =[&](sensor_msgs::PointCloud2::ConstPtr msg_pc_ptr) { - pcl::fromROSMsg(*msg_pc_ptr, *cloud);
- size_t cloud_size = cloud->size();
- int dim=3,k=10;
- float* points = new float[cloud_size*dim];
- for (int i=0; i
- float* p = points + i*dim;
- p[0] = cloud->points[i].x;
- p[1] = cloud->points[i].y;
- p[2] = cloud->points[i].z;
- }
-
- auto t1 = std::chrono::steady_clock::now();
- KDTreeTableAdaptor<float,float> kdtree(cloud_size, dim, points, 64);
- kdtree.index->buildIndex();
- std::vector
int>> neighbors_all(cloud_size,std::vector<int>(k)); - std::vector<int> sizes(cloud_size,k);
-
- for (int i=0; i
- std::vector<size_t> out_ids(k);
- std::vector<float> out_dists_sqr(k);
- nanoflann::KNNResultSet<float> result_set(k);
- result_set.init(&out_ids[0], &out_dists_sqr[0]);
- kdtree.index->findNeighbors(result_set, &points[i*dim], nanoflann::SearchParams(k));
- for (int j=0; j
- neighbors_all[i][j] = out_ids[j];
- }
- }
-
- auto t2 = std::chrono::steady_clock::now();
- delete []points;
-
- std::vector<int> flatten_neighbors_all(k * cloud_size);
- pcl::gpu::PtrStep<int> ps(&flatten_neighbors_all[0], k * pcl::gpu::PtrStep<int>::elem_size);
- for (size_t i=0; i
- std::copy(neighbors_all[i].begin(), neighbors_all[i].end(), ps.ptr(i));
- }
-
- pcl::gpu::NeighborIndices gpu_neighbor_indices;
- pcl::gpu::NormalEstimation::PointCloud gpu_cloud;
- gpu_cloud.upload(cloud->points);
- gpu_neighbor_indices.upload(flatten_neighbors_all, sizes, k);
-
- pcl::gpu::NormalEstimation::Normals gpu_normals;
- pcl::gpu::NormalEstimation::computeNormals(gpu_cloud, gpu_neighbor_indices, gpu_normals);
- pcl::gpu::NormalEstimation::flipNormalTowardsViewpoint(gpu_cloud, 0.f, 0.f, 0.f, gpu_normals);
- auto t3 = std::chrono::steady_clock::now();
- auto compute_normal_time = std::chrono::duration<double,std::milli>(t3 - t2);
-
- std::vector
normals; - gpu_normals.download(normals);
- auto t4 = std::chrono::steady_clock::now();
-
- auto knn_time = std::chrono::duration<double,std::milli>(t2-t1);
- auto total_time = std::chrono::duration<double,std::milli>(t4-t1);
- spdlog::info("cloud size:{:d}, knn_time:{:.3f} ms,compute_normal_time:{:.3f} ms, total_time:{:.3f} ms", cloud->size(), knn_time.count(), compute_normal_time.count(), total_time.count());
- };
- ros::Subscriber pc_sub = node.subscribe
("/BackLidar/lslidar_point_cloud", 1, callback); - ros::spin();
- return 0;
- }
对于for循环遍历查找k近邻索引部分我们先不加"# pragma omp parallel for",编译运行。

哇,加速效果明显,8w点云knn时间从400ms降到150ms左右。比pcl自带KDTree使用上OpenMP并行加速还要快。

要是能利用OpenMP做并行加速,岂不是要起飞??!!加上OpenMP加速试一试。
- # pragma omp parallel for
- for (int i=0; i
- std::vector<size_t> out_ids(k);
- std::vector<float> out_dists_sqr(k);
- nanoflann::KNNResultSet<float> result_set(k);
- result_set.init(&out_ids[0], &out_dists_sqr[0]);
- kdtree.index->findNeighbors(result_set, &points[i*dim], nanoflann::SearchParams(k));
- for (int j=0; j
- neighbors_all[i][j] = out_ids[j];
- }
- }
编译运行,测试结果如下:

哇,虽然有波动,但常能在50ms左右徘徊,相比曾几何时的400ms提速了8倍。 多核算力分配也很均衡,完美!

所以,knn加速哪家强,nanoflann+OpenMP当称王!!!
【参考文献】
-
相关阅读:
Docker 从构建开始导出一个镜像
[开源]传统实体产业提供进销存管理解决方案,助传统企业降本增效
了解什么是架构基本概念和架构本质
配置文件和yaml语法
ESP8266智能家居(4)——开发APP基础篇
(224)Verilog HDL:设计摩尔状态机
统计学习:逻辑回归与交叉熵损失(Pytorch实现)
Linux网络编程基础
Linux-线程同步(条件变量、POSIX信号量)
Java 修饰符2
-
原文地址:https://blog.csdn.net/ChuiGeDaQiQiu/article/details/128053094