
- RDB持久化 - AOF持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件称为RDB文件,默认是保存在当前运行目录。

Redis停机时会执行一次RDB。
RDB持久化在四种情况下会执行: - 执行save命令 - 执行bgsave命令 - Redis停机时 - 触发RDB条件时
1)save命令 执行下面的命令,可以立即执行一次RDB: save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。 2)bgsave命令 下面的命令可以异步执行RDB: 这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。 3)停机时 Redis停机时会执行一次save命令,实现RDB持久化。 4)触发RDB条件 Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下: # 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB save 900 1 save 300 10 save 60 10000
首先需要安装Redis所需要的依赖:
yum install -y gcc tcl
然后将下载好的Redis安装包上传到虚拟机的任意目录:

例如,我放到了/tmp目录:

解压缩:
tar -xzf redis-6.2.4.tar.gz
解压后:

进入redis目录:
cd redis-6.2.4
运行编译命令:
make && make install
如果没有出错,应该就安装成功了。
然后修改redis.conf文件中的一些配置:
# 绑定地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问
bind 0.0.0.0
# 保护模式,关闭保护模式
protected-mode no
# 数据库数量,设置为1
databases 1
启动Redis:
redis-server redis.conf
停止redis服务:
redis-cli shutdown
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

RDB的其它配置也可以在redis.conf文件中设置:

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:

RDB方式bgsave的基本流程?
RDB会在什么时候执行?save 60 1000代表什么含义?
RDB的缺点?
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

AOF的命令记录的频率也可以通过redis.conf文件来配:


因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

2.1.我们搭建的主从集群结构如图:

共包含三个节点,一个主节点,两个从节点。
这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

2.2准备实例和配置
要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
1)创建目录
我们创建三个文件夹,名字分别叫7001、7002、7003:
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003
如图:

2)恢复原始配置 修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。
# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000
# 关闭AOF
appendonly no
3)拷贝配置文件到每个实例目录
然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):
# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003
# 方式二:管道组合命令,一键拷贝 echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf 4)修改每个实例的端口、工作目录
修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在 目录(在/tmp目录执行下列命令):
sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf
5)修改每个实例的声明IP
虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如 下:
# redis实例的声明 IP
replica-announce-ip 192.168.150.101
每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):
# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf
# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf
2.3.启动
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf
启动后:

如果要一键停止,可以运行下面命令:
printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown
2.4.开启主从关系
现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。
有临时和永久两种模式:
修改配置文件(永久生效) 在redis.conf中添加一行配置:slaveof
使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):
slaveof
注意:在5.0以后新增命令replicaof,与salveof效果一致。
这里我们为了演示方便,使用方式二。
通过redis-cli命令连接7002,执行下面命令:
# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001
通过redis-cli命令连接7003,执行下面命令:
# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001
然后连接 7001节点,查看集群状态:
# 连接 7001
redis-cli -p 7001
# 查看状态
info replication
结果:

2.5.测试
执行下列操作以测试:
可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。
假设有A、B两个Redis实例,如何让B作为A的slave节点?
数据同步原理
主从第一次同步是全量同步:

master如何判断slave是不是第一次来同步数据?这里会用到两个很重要的概念:
思考一下:
master如何判断slave节点是不是第一次来做数据同步?
主从第一次同步是全量同步

总结:
简述全量同步的流程?
主从第一次同步是全量同步

主从第一次同步是全量同步,但如果slave重启后同步,则执行增量同步

注意:
repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。
可以从以下几个方面来优化Redis主从就集群:

总结:
简述全量同步和增量同步区别?
什么时候执行全量同步?
什么时候执行增量同步?
思考:
slave节点宕机恢复后可以找master节点同步数据,那master节点宕机怎么办?
哨兵的作用
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。哨兵的结构和作用如下:

服务状态监控
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

选举新的master
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
如何实现故障转移
当选中了其中一个slave为新的master后(例如slave1),故障的转移的步骤如下:

总结:
Sentinel的三个作用是什么?
Sentinel如何判断一个redis实例是否健康?
故障转移步骤有哪些?
1.集群结构
这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:

三个sentinel实例信息如下:

2.准备实例和配置
要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
我们创建三个文件夹,名字分别叫s1、s2、s3:
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3
如图:

然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:
port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"
解读:
mymaster:主节点名称,自定义,任意写
192.168.150.101 7001:主节点的ip和端口
2:选举master时的quorum值
然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):
# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf
修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:
sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf
3.3.启动 Redis集群
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf
启动后:

3.4.测试
尝试让master节点7001宕机,查看sentinel日志:

查看7003的日志:

查看7002的日志:

RedisTemplate的哨兵模式
在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
首先,我们引入课前资料提供的Demo工程:

1.在pom文件中引入redis的starter依赖:

2.然后在配置文件application.yml中指定sentinel相关信息:

3.配置主从读写分离

这里的ReadFrom是配置Redis的读取策略,是一个枚举,包括下面选择:
分片集群结构
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
使用分片集群可以解决上述问题,分片集群特征:

1.集群结构
分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个 slave节点,结构如下:

这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

2.准备实例和配置
删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:
# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003
在/tmp下准备一个新的redis.conf文件,内容如下:
port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例
ip replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log
将这个文件拷贝到每个目录下:
# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf
修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:
# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf Redis
4.3.启动
因为已经配置了后台启动模式,所以可以直接启动服务:
# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf
通过ps查看状态:
ps -ef | grep redis
发现服务都已经正常启动:

如果要关闭所有进程,可以执行命令:
ps -ef | grep redis | awk '{print $2}' | xargs kill
或者(推荐这种方式):
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown
4.4.创建集群
虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。
我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli 中。
1)Redis5.0之前 Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的 所以需要安装ruby环境。
# 安装依赖
yum -y install zlib ruby rubygems
gem install redis
然后通过命令来管理集群:
# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002
192.168.150.101:8003
2)Redis5.0以后
我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:
redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001
192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001
192.168.150.101:8002 192.168.150.101:8003
命令说明:
redis-cli --cluster或者./redis-trib.rb:代表集群操作命令
create:代表是创建集群
--replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave 节点,随机分配到不同master
运行后的样子:

这里输入yes,则集群开始创建:

通过命令可以查看集群状态:
redis-cli -p 7001 cluster nodes

4.5.测试
尝试连接7001节点,存储一个数据:
# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1
结果悲剧了:

集群操作时,需要给redis-cli加上-c参数才可以:
redis-cli -c -p 7001
这次可以了:

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

总结:
Redis如何判断某个key应该在哪个实例?
如何将同一类数据固定的保存在同一个Redis实例?
添加一个节点到集群
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

比如,添加节点的命令:

案例:向集群中添加一个新的master节点,并向其中存储 num = 10
需求:
练习:删除集群中的一个节点
需求:
当集群中有一个master宕机会发生什么呢?
1.首先是该实例与其它实例失去连接
2.然后是疑似宕机:

3.最后是确定下线,自动提升一个slave为新的master:

数据迁移
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
手动的Failover支持三种不同模式:

案例:在7002这个slave节点执行手动故障转移,重新夺回master地位
步骤如下:
1.利用redis-cli连接7002这个节点
2.执行cluster failover命令
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致: 1.引入redis的starter依赖
2.配置分片集群地址
3.配置读写分离
与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

思考:
Redis的分片集群、Elasticsearch的分片集群有哪些共同的特征呢?