本文希望对CenterNet算法的Backbone暨DLASeg进行剪枝。
剪枝试验涉及3个文件,分别为:
DCN可变性卷积dcn_v2.py,因为DLASeg依赖DCN。
- #!/usr/bin/env python
- from __future__ import absolute_import
- from __future__ import print_function
- from __future__ import division
-
- import math
- import torch
- from torch import nn
- from torch.autograd import Function
- from torch.nn.modules.utils import _pair
- from torch.autograd.function import once_differentiable
-
- import _ext as _backend
-
-
- class _DCNv2(Function):
- @staticmethod
- def forward(ctx, input, offset, mask, weight, bias,
- stride, padding, dilation, deformable_groups):
- ctx.stride = _pair(stride)
- ctx.padding = _pair(padding)
- ctx.dilation = _pair(dilation)
- ctx.kernel_size = _pair(weight.shape[2:4])
- ctx.deformable_groups = deformable_groups
- output = _backend.dcn_v2_forward(input, weight, bias,
- offset, mask,
- ctx.kernel_size[0], ctx.kernel_size[1],
- ctx.stride[0], ctx.stride[1],
- ctx.padding[0], ctx.padding[1],
- ctx.dilation[0], ctx.dilation[1],
- ctx.deformable_groups)
- ctx.save_for_backward(input, offset, mask, weight, bias)
- return output
-
- @staticmethod
- @once_differentiable
- def backward(ctx, grad_output):
- input, offset, mask, weight, bias = ctx.saved_tensors
- grad_input, grad_offset, grad_mask, grad_weight, grad_bias = \
- _backend.dcn_v2_backward(input, weight,
- bias,
- offset, mask,
- grad_output,
- ctx.kernel_size[0], ctx.kernel_size[1],
- ctx.stride[0], ctx.stride[1],
- ctx.padding[0], ctx.padding[1],
- ctx.dilation[0], ctx.dilation[1],
- ctx.deformable_groups)
-
- return grad_input, grad_offset, grad_mask, grad_weight, grad_bias,\
- None, None, None, None,
-
-
- dcn_v2_conv = _DCNv2.apply
-
-
- class DCNv2(nn.Module):
-
- def __init__(self, in_channels, out_channels,
- kernel_size, stride, padding, dilation=1, deformable_groups=1):
- super(DCNv2, self).__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.kernel_size = _pair(kernel_size)
- self.stride = _pair(stride)
- self.padding = _pair(padding)
- self.dilation = _pair(dilation)
- self.deformable_groups = deformable_groups
-
- self.weight = nn.Parameter(torch.Tensor(
- out_channels, in_channels, *self.kernel_size))
- self.bias = nn.Parameter(torch.Tensor(out_channels))
- self.reset_parameters()
-
- def reset_parameters(self):
- n = self.in_channels
- for k in self.kernel_size:
- n *= k
- stdv = 1. / math.sqrt(n)
- self.weight.data.uniform_(-stdv, stdv)
- self.bias.data.zero_()
-
- def forward(self, input, offset, mask):
- assert 2 * self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
- offset.shape[1]
- assert self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
- mask.shape[1]
- return dcn_v2_conv(input, offset, mask,
- self.weight,
- self.bias,
- self.stride,
- self.padding,
- self.dilation,
- self.deformable_groups)
-
-
- class DCN(DCNv2):
-
- def __init__(self, in_channels, out_channels,
- kernel_size, stride, padding,
- dilation=1, deformable_groups=1):
- super(DCN, self).__init__(in_channels, out_channels,
- kernel_size, stride, padding, dilation, deformable_groups)
-
- channels_ = self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1]
- self.conv_offset_mask = nn.Conv2d(self.in_channels,
- channels_,
- kernel_size=self.kernel_size,
- stride=self.stride,
- padding=self.padding,
- bias=True)
- self.init_offset()
-
- def init_offset(self):
- self.conv_offset_mask.weight.data.zero_()
- self.conv_offset_mask.bias.data.zero_()
-
- def forward(self, input):
- out = self.conv_offset_mask(input)
- o1, o2, mask = torch.chunk(out, 3, dim=1)
- offset = torch.cat((o1, o2), dim=1)
- mask = torch.sigmoid(mask)
- return dcn_v2_conv(input, offset, mask,
- self.weight, self.bias,
- self.stride,
- self.padding,
- self.dilation,
- self.deformable_groups)
-
-
-
- class _DCNv2Pooling(Function):
- @staticmethod
- def forward(ctx, input, rois, offset,
- spatial_scale,
- pooled_size,
- output_dim,
- no_trans,
- group_size=1,
- part_size=None,
- sample_per_part=4,
- trans_std=.0):
- ctx.spatial_scale = spatial_scale
- ctx.no_trans = int(no_trans)
- ctx.output_dim = output_dim
- ctx.group_size = group_size
- ctx.pooled_size = pooled_size
- ctx.part_size = pooled_size if part_size is None else part_size
- ctx.sample_per_part = sample_per_part
- ctx.trans_std = trans_std
-
- output, output_count = \
- _backend.dcn_v2_psroi_pooling_forward(input, rois, offset,
- ctx.no_trans, ctx.spatial_scale,
- ctx.output_dim, ctx.group_size,
- ctx.pooled_size, ctx.part_size,
- ctx.sample_per_part, ctx.trans_std)
- ctx.save_for_backward(input, rois, offset, output_count)
- return output
-
- @staticmethod
- @once_differentiable
- def backward(ctx, grad_output):
- input, rois, offset, output_count = ctx.saved_tensors
- grad_input, grad_offset = \
- _backend.dcn_v2_psroi_pooling_backward(grad_output,
- input,
- rois,
- offset,
- output_count,
- ctx.no_trans,
- ctx.spatial_scale,
- ctx.output_dim,
- ctx.group_size,
- ctx.pooled_size,
- ctx.part_size,
- ctx.sample_per_part,
- ctx.trans_std)
-
- return grad_input, None, grad_offset, \
- None, None, None, None, None, None, None, None
-
-
- dcn_v2_pooling = _DCNv2Pooling.apply
-
-
- class DCNv2Pooling(nn.Module):
-
- def __init__(self,
- spatial_scale,
- pooled_size,
- output_dim,
- no_trans,
- group_size=1,
- part_size=None,
- sample_per_part=4,
- trans_std=.0):
- super(DCNv2Pooling, self).__init__()
- self.spatial_scale = spatial_scale
- self.pooled_size = pooled_size
- self.output_dim = output_dim
- self.no_trans = no_trans
- self.group_size = group_size
- self.part_size = pooled_size if part_size is None else part_size
- self.sample_per_part = sample_per_part
- self.trans_std = trans_std
-
- def forward(self, input, rois, offset):
- assert input.shape[1] == self.output_dim
- if self.no_trans:
- offset = input.new()
- return dcn_v2_pooling(input, rois, offset,
- self.spatial_scale,
- self.pooled_size,
- self.output_dim,
- self.no_trans,
- self.group_size,
- self.part_size,
- self.sample_per_part,
- self.trans_std)
-
-
- class DCNPooling(DCNv2Pooling):
-
- def __init__(self,
- spatial_scale,
- pooled_size,
- output_dim,
- no_trans,
- group_size=1,
- part_size=None,
- sample_per_part=4,
- trans_std=.0,
- deform_fc_dim=1024):
- super(DCNPooling, self).__init__(spatial_scale,
- pooled_size,
- output_dim,
- no_trans,
- group_size,
- part_size,
- sample_per_part,
- trans_std)
-
- self.deform_fc_dim = deform_fc_dim
-
- if not no_trans:
- self.offset_mask_fc = nn.Sequential(
- nn.Linear(self.pooled_size * self.pooled_size *
- self.output_dim, self.deform_fc_dim),
- nn.ReLU(inplace=True),
- nn.Linear(self.deform_fc_dim, self.deform_fc_dim),
- nn.ReLU(inplace=True),
- nn.Linear(self.deform_fc_dim, self.pooled_size *
- self.pooled_size * 3)
- )
- self.offset_mask_fc[4].weight.data.zero_()
- self.offset_mask_fc[4].bias.data.zero_()
-
- def forward(self, input, rois):
- offset = input.new()
-
- if not self.no_trans:
-
- # do roi_align first
- n = rois.shape[0]
- roi = dcn_v2_pooling(input, rois, offset,
- self.spatial_scale,
- self.pooled_size,
- self.output_dim,
- True, # no trans
- self.group_size,
- self.part_size,
- self.sample_per_part,
- self.trans_std)
-
- # build mask and offset
- offset_mask = self.offset_mask_fc(roi.view(n, -1))
- offset_mask = offset_mask.view(
- n, 3, self.pooled_size, self.pooled_size)
- o1, o2, mask = torch.chunk(offset_mask, 3, dim=1)
- offset = torch.cat((o1, o2), dim=1)
- mask = torch.sigmoid(mask)
-
- # do pooling with offset and mask
- return dcn_v2_pooling(input, rois, offset,
- self.spatial_scale,
- self.pooled_size,
- self.output_dim,
- self.no_trans,
- self.group_size,
- self.part_size,
- self.sample_per_part,
- self.trans_std) * mask
- # only roi_align
- return dcn_v2_pooling(input, rois, offset,
- self.spatial_scale,
- self.pooled_size,
- self.output_dim,
- self.no_trans,
- self.group_size,
- self.part_size,
- self.sample_per_part,
- self.trans_std)
pose_dla_dcn.py文件:
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import os
- import math
- import logging
- import numpy as np
- from os.path import join
-
- import torch
- from torch import nn
- import torch.nn.functional as F
- import torch.utils.model_zoo as model_zoo
-
- from dcn_v2 import DCN
-
- BN_MOMENTUM = 0.1
- logger = logging.getLogger(__name__)
-
- def get_model_url(data='imagenet', name='dla34', hash='ba72cf86'):
- return join('http://dl.yf.io/dla/models', data, '{}-{}.pth'.format(name, hash))
-
-
- def conv3x3(in_planes, out_planes, stride=1):
- "3x3 convolution with padding"
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
-
-
- class BasicBlock(nn.Module):
- def __init__(self, inplanes, planes, stride=1, dilation=1):
- super(BasicBlock, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3,
- stride=stride, padding=dilation,
- bias=False, dilation=dilation)
- self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
- stride=1, padding=dilation,
- bias=False, dilation=dilation)
- self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.stride = stride
-
- def forward(self, x, residual=None):
- if residual is None:
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class Bottleneck(nn.Module):
- expansion = 2
-
- def __init__(self, inplanes, planes, stride=1, dilation=1):
- super(Bottleneck, self).__init__()
- expansion = Bottleneck.expansion
- bottle_planes = planes // expansion
- self.conv1 = nn.Conv2d(inplanes, bottle_planes,
- kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM)
- self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3,
- stride=stride, padding=dilation,
- bias=False, dilation=dilation)
- self.bn2 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM)
- self.conv3 = nn.Conv2d(bottle_planes, planes,
- kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.stride = stride
-
- def forward(self, x, residual=None):
- if residual is None:
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class BottleneckX(nn.Module):
- expansion = 2
- cardinality = 32
-
- def __init__(self, inplanes, planes, stride=1, dilation=1):
- super(BottleneckX, self).__init__()
- cardinality = BottleneckX.cardinality
- # dim = int(math.floor(planes * (BottleneckV5.expansion / 64.0)))
- # bottle_planes = dim * cardinality
- bottle_planes = planes * cardinality // 32
- self.conv1 = nn.Conv2d(inplanes, bottle_planes,
- kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM)
- self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3,
- stride=stride, padding=dilation, bias=False,
- dilation=dilation, groups=cardinality)
- self.bn2 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM)
- self.conv3 = nn.Conv2d(bottle_planes, planes,
- kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.stride = stride
-
- def forward(self, x, residual=None):
- if residual is None:
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class Root(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, residual):
- super(Root, self).__init__()
- self.conv = nn.Conv2d(
- in_channels, out_channels, 1,
- stride=1, bias=False, padding=(kernel_size - 1) // 2)
- self.bn = nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.residual = residual
-
- def forward(self, *x):
- children = x
- x = self.conv(torch.cat(x, 1))
- x = self.bn(x)
- if self.residual:
- x += children[0]
- x = self.relu(x)
-
- return x
-
-
- class Tree(nn.Module):
- def __init__(self, levels, block, in_channels, out_channels, stride=1,
- level_root=False, root_dim=0, root_kernel_size=1,
- dilation=1, root_residual=False):
- super(Tree, self).__init__()
- if root_dim == 0:
- root_dim = 2 * out_channels
- if level_root:
- root_dim += in_channels
- if levels == 1:
- self.tree1 = block(in_channels, out_channels, stride,
- dilation=dilation)
- self.tree2 = block(out_channels, out_channels, 1,
- dilation=dilation)
- else:
- self.tree1 = Tree(levels - 1, block, in_channels, out_channels,
- stride, root_dim=0,
- root_kernel_size=root_kernel_size,
- dilation=dilation, root_residual=root_residual)
- self.tree2 = Tree(levels - 1, block, out_channels, out_channels,
- root_dim=root_dim + out_channels,
- root_kernel_size=root_kernel_size,
- dilation=dilation, root_residual=root_residual)
- if levels == 1:
- self.root = Root(root_dim, out_channels, root_kernel_size,
- root_residual)
- self.level_root = level_root
- self.root_dim = root_dim
- self.downsample = None
- self.project = None
- self.levels = levels
- if stride > 1:
- self.downsample = nn.MaxPool2d(stride, stride=stride)
- if in_channels != out_channels:
- self.project = nn.Sequential(
- nn.Conv2d(in_channels, out_channels,
- kernel_size=1, stride=1, bias=False),
- nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM)
- )
-
- def forward(self, x, residual=None, children=None):
- children = [] if children is None else children
- bottom = self.downsample(x) if self.downsample else x
- residual = self.project(bottom) if self.project else bottom
- if self.level_root:
- children.append(bottom)
- x1 = self.tree1(x, residual)
- if self.levels == 1:
- x2 = self.tree2(x1)
- x = self.root(x2, x1, *children)
- else:
- children.append(x1)
- x = self.tree2(x1, children=children)
- return x
-
-
- class DLA(nn.Module):
- def __init__(self, levels, channels, num_classes=1000,
- block=BasicBlock, residual_root=False, linear_root=False):
- super(DLA, self).__init__()
- self.channels = channels
- self.num_classes = num_classes
- self.base_layer = nn.Sequential(
- nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
- padding=3, bias=False),
- nn.BatchNorm2d(channels[0], momentum=BN_MOMENTUM),
- nn.ReLU(inplace=True))
- self.level0 = self._make_conv_level(
- channels[0], channels[0], levels[0])
- self.level1 = self._make_conv_level(
- channels[0], channels[1], levels[1], stride=2)
- self.level2 = Tree(levels[2], block, channels[1], channels[2], 2,
- level_root=False,
- root_residual=residual_root)
- self.level3 = Tree(levels[3], block, channels[2], channels[3], 2,
- level_root=True, root_residual=residual_root)
- self.level4 = Tree(levels[4], block, channels[3], channels[4], 2,
- level_root=True, root_residual=residual_root)
- self.level5 = Tree(levels[5], block, channels[4], channels[5], 2,
- level_root=True, root_residual=residual_root)
-
- # for m in self.modules():
- # if isinstance(m, nn.Conv2d):
- # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- # m.weight.data.normal_(0, math.sqrt(2. / n))
- # elif isinstance(m, nn.BatchNorm2d):
- # m.weight.data.fill_(1)
- # m.bias.data.zero_()
-
- def _make_level(self, block, inplanes, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or inplanes != planes:
- downsample = nn.Sequential(
- nn.MaxPool2d(stride, stride=stride),
- nn.Conv2d(inplanes, planes,
- kernel_size=1, stride=1, bias=False),
- nn.BatchNorm2d(planes, momentum=BN_MOMENTUM),
- )
-
- layers = []
- layers.append(block(inplanes, planes, stride, downsample=downsample))
- for i in range(1, blocks):
- layers.append(block(inplanes, planes))
-
- return nn.Sequential(*layers)
-
- def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
- modules = []
- for i in range(convs):
- modules.extend([
- nn.Conv2d(inplanes, planes, kernel_size=3,
- stride=stride if i == 0 else 1,
- padding=dilation, bias=False, dilation=dilation),
- nn.BatchNorm2d(planes, momentum=BN_MOMENTUM),
- nn.ReLU(inplace=True)])
- inplanes = planes
- return nn.Sequential(*modules)
-
- def forward(self, x):
- y = []
- x = self.base_layer(x)
- for i in range(6):
- x = getattr(self, 'level{}'.format(i))(x)
- y.append(x)
- return y
-
- def load_pretrained_model(self, data='imagenet', name='dla34', hash='ba72cf86'):
- # fc = self.fc
- if name.endswith('.pth'):
- model_weights = torch.load(data + name)
- else:
- model_url = get_model_url(data, name, hash)
- model_weights = model_zoo.load_url(model_url)
- num_classes = len(model_weights[list(model_weights.keys())[-1]])
- self.fc = nn.Conv2d(
- self.channels[-1], num_classes,
- kernel_size=1, stride=1, padding=0, bias=True)
- self.load_state_dict(model_weights)
- # self.fc = fc
-
-
- def dla34(pretrained=True, **kwargs): # DLA-34
- model = DLA([1, 1, 1, 2, 2, 1],
- [16, 32, 64, 128, 256, 512],
- block=BasicBlock, **kwargs)
- #if pretrained:
- # model.load_pretrained_model(data='imagenet', name='dla34', hash='ba72cf86')
- return model
-
- class Identity(nn.Module):
-
- def __init__(self):
- super(Identity, self).__init__()
-
- def forward(self, x):
- return x
-
-
- def fill_fc_weights(layers):
- for m in layers.modules():
- if isinstance(m, nn.Conv2d):
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
-
-
- def fill_up_weights(up):
- w = up.weight.data
- f = math.ceil(w.size(2) / 2)
- c = (2 * f - 1 - f % 2) / (2. * f)
- for i in range(w.size(2)):
- for j in range(w.size(3)):
- w[0, 0, i, j] = \
- (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
- for c in range(1, w.size(0)):
- w[c, 0, :, :] = w[0, 0, :, :]
-
-
- class DeformConv(nn.Module):
- def __init__(self, chi, cho):
- super(DeformConv, self).__init__()
- self.actf = nn.Sequential(
- nn.BatchNorm2d(cho, momentum=BN_MOMENTUM),
- nn.ReLU(inplace=True)
- )
- self.conv = DCN(chi, cho, kernel_size=(3,3), stride=1, padding=1, dilation=1, deformable_groups=1)
-
- def forward(self, x):
- x = self.conv(x)
- x = self.actf(x)
- return x
-
-
- class IDAUp(nn.Module):
-
- def __init__(self, o, channels, up_f):
- super(IDAUp, self).__init__()
- for i in range(1, len(channels)):
- c = channels[i]
- f = int(up_f[i])
- proj = DeformConv(c, o)
- node = DeformConv(o, o)
-
- up = nn.ConvTranspose2d(o, o, f * 2, stride=f,
- padding=f // 2, output_padding=0,
- groups=o, bias=False)
- fill_up_weights(up)
-
- setattr(self, 'proj_' + str(i), proj)
- setattr(self, 'up_' + str(i), up)
- setattr(self, 'node_' + str(i), node)
-
-
- def forward(self, layers, startp, endp):
- for i in range(startp + 1, endp):
- upsample = getattr(self, 'up_' + str(i - startp))
- project = getattr(self, 'proj_' + str(i - startp))
- layers[i] = upsample(project(layers[i]))
- node = getattr(self, 'node_' + str(i - startp))
- layers[i] = node(layers[i] + layers[i - 1])
-
-
-
- class DLAUp(nn.Module):
- def __init__(self, startp, channels, scales, in_channels=None):
- super(DLAUp, self).__init__()
- self.startp = startp
- if in_channels is None:
- in_channels = channels
- self.channels = channels
- channels = list(channels)
- scales = np.array(scales, dtype=int)
- for i in range(len(channels) - 1):
- j = -i - 2
- setattr(self, 'ida_{}'.format(i),
- IDAUp(channels[j], in_channels[j:],
- scales[j:] // scales[j]))
- scales[j + 1:] = scales[j]
- in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]]
-
- def forward(self, layers):
- out = [layers[-1]] # start with 32
- for i in range(len(layers) - self.startp - 1):
- ida = getattr(self, 'ida_{}'.format(i))
- ida(layers, len(layers) -i - 2, len(layers))
- out.insert(0, layers[-1])
- return out
-
-
- class Interpolate(nn.Module):
- def __init__(self, scale, mode):
- super(Interpolate, self).__init__()
- self.scale = scale
- self.mode = mode
-
- def forward(self, x):
- x = F.interpolate(x, scale_factor=self.scale, mode=self.mode, align_corners=False)
- return x
-
-
- class DLASeg(nn.Module):
- def __init__(self, base_name, heads, pretrained, down_ratio, final_kernel,
- last_level, head_conv, out_channel=0):
- super(DLASeg, self).__init__()
- assert down_ratio in [2, 4, 8, 16]
- self.first_level = int(np.log2(down_ratio))
- self.last_level = last_level
- self.base = globals()[base_name](pretrained=pretrained)
- channels = self.base.channels
- scales = [2 ** i for i in range(len(channels[self.first_level:]))]
- self.dla_up = DLAUp(self.first_level, channels[self.first_level:], scales)
-
- if out_channel == 0:
- out_channel = channels[self.first_level]
-
- self.ida_up = IDAUp(out_channel, channels[self.first_level:self.last_level],
- [2 ** i for i in range(self.last_level - self.first_level)])
-
- self.heads = heads
- for head in self.heads:
- classes = self.heads[head]
- if head_conv > 0:
- fc = nn.Sequential(
- nn.Conv2d(channels[self.first_level], head_conv,
- kernel_size=3, padding=1, bias=True),
- nn.ReLU(inplace=True),
- nn.Conv2d(head_conv, classes,
- kernel_size=final_kernel, stride=1,
- padding=final_kernel // 2, bias=True))
- if 'hm' in head:
- fc[-1].bias.data.fill_(-2.19)
- else:
- fill_fc_weights(fc)
- else:
- fc = nn.Conv2d(channels[self.first_level], classes,
- kernel_size=final_kernel, stride=1,
- padding=final_kernel // 2, bias=True)
- if 'hm' in head:
- fc.bias.data.fill_(-2.19)
- else:
- fill_fc_weights(fc)
- self.__setattr__(head, fc)
-
- def forward(self, x):
- x = self.base(x)
- x = self.dla_up(x)
-
- y = []
- for i in range(self.last_level - self.first_level):
- y.append(x[i].clone())
- self.ida_up(y, 0, len(y))
-
- z = {}
- for head in self.heads:
- z[head] = self.__getattr__(head)(y[-1])
- # return [z] xiehao
- return z
-
-
- def get_pose_net(num_layers, heads, head_conv=256, down_ratio=4):
- model = DLASeg('dla{}'.format(num_layers), heads,
- pretrained=True,
- down_ratio=down_ratio,
- final_kernel=1,
- last_level=5,
- head_conv=head_conv)
- return model
-
测试剪枝主流程的centerNet_prune文件
- from nni.compression.pytorch.pruning import L1NormPruner
- from nni.compression.pytorch.speedup import ModelSpeedup
- import pose_dla_dcn
- import torch
-
- num_layers = 34
- heads = {'hm': 2, 'wh': 2, 'reg': 2}
- config_list = [{
- 'sparsity': 0.5,
- 'op_types': ['Conv2d']
- }]
-
- model = pose_dla_dcn.get_pose_net(num_layers, heads)
- torch.save(model.state_dict(), "baseline.pth")
- # model.cuda()
- # model(torch.rand(1, 3, 512, 512).cuda()) # 512严格要求
-
- print("--------------raw model--------------")
- print(model)
-
- pruner = L1NormPruner(model, config_list, mode='dependency_aware', dummy_input=torch.rand(1, 3, 512, 512))
- print("--------------pruned model--------------")
- print(model)
-
- # compress the model and generate the masks
- _, masks = pruner.compress()
- # show the masks sparsity
- for name, mask in masks.items():
- print(name, ' sparsity: ', '{:.2f}'.format(mask['weight'].sum() / mask['weight'].numel()))
-
- # need to unwarp the model, if the model is wrawpped before speedup
- pruner._unwrap_model()
-
- # speedup the model
- model.eval()
- ModelSpeedup(model, dummy_input=torch.rand(1, 3, 512, 512), masks_file=masks).speedup_model()
-
- print("--------------after sppedup--------------")
- print(model)
- torch.save(model, "model_pruner.pth")
最后一个文件有一个注意点,就是dummy_input输入一定是[batch, 3, 512, 512]的形式,否则卷积池化后残差连接会有问题,会出现[batch, 128, 3, 3] 和[batch, 128, 2, 2]相加的情况。
执行后报错,出错信息为:
self.output = self.module(*dummy_input)
File "D:\programs\python37\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
TypeError: forward() missing 1 required positional argument: 'input'
- [2022-11-18 19:15:08] start to speedup the model
- D:\programs\python37\lib\site-packages\nni\compression\pytorch\utils\mask_conflict.py:124: UserWarning: This overload of nonzero is deprecated:
- nonzero()
- Consider using one of the following signatures instead:
- nonzero(*, bool as_tuple) (Triggered internally at ..\torch\csrc\utils\python_arg_parser.cpp:882.)
- all_ones = (w_mask.flatten(1).sum(-1) == count).nonzero().squeeze(1).tolist()
- both dim0 and dim1 masks found.
- [2022-11-18 19:18:01] infer module masks...
- [2022-11-18 19:18:01] Update mask for base.base_layer.0
- [2022-11-18 19:18:03] Update mask for dla_up.ida_0.proj_1.actf.0
- Traceback (most recent call last):
- File "D:/workspace/newczalgo/CenterNet_3DCar_Slimming/src/centernet_prune/centernet_prune.py", line 34, in
- ModelSpeedup(model, torch.rand(1, 3, 512, 512), masks).speedup_model()
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 536, in speedup_model
- self.infer_modules_masks()
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 371, in infer_modules_masks
- self.update_direct_sparsity(curnode)
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 240, in update_direct_sparsity
- state_dict=copy.deepcopy(module.state_dict()), batch_dim=self.batch_dim)
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\infer_mask.py", line 80, in __init__
- self.output = self.module(*dummy_input)
- File "D:\programs\python37\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
- result = self.forward(*input, **kwargs)
- TypeError: forward() missing 1 required positional argument: 'input'
-
- Process finished with exit code 1
nni的github上有对应的issue:
主要是DCN的输出为empy,导致dummy_input的list为空的。
尝试方法一:
网上说把有问题的层信息加入config_list的exclude中,比如:
- config_list = [{
- 'sparsity': 0.5,
- 'op_types': ['Conv2d']
- },
- {'exclude': True, 'op_names': ['conv_offset_mask']}
- ]
op_names换成:
dla_up.ida_0.proj_1.actf.0 或 dla_up.ida_0.proj_1.conv.conv_offset_mask或dla_up等都失败,报错信息还是一样的。
尝试方法二:
在compress中当dumpy_input为空时直接return,如下所示:

此时又会出现新的bug:
- [2022-11-18 21:43:10] Update mask for dla_up.ida_2.aten::add.233
- Traceback (most recent call last):
- File "D:/workspace/newczalgo/CenterNet_3DCar_Slimming/src/centernet_prune/centernet_prune.py", line 38, in
- ModelSpeedup(model, dummy_input=torch.rand(1, 3, 512, 512), masks_file=masks).speedup_model()
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 539, in speedup_model
- self.infer_modules_masks()
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 374, in infer_modules_masks
- self.update_direct_sparsity(curnode)
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 235, in update_direct_sparsity
- func, dummy_input, in_masks, in_constants=in_constants, batch_dim=self.batch_dim)
- File "D:\programs\python37\lib\site-packages\nni\compression\pytorch\speedup\infer_mask.py", line 80, in __init__
- self.output = self.module(*dummy_input)
- TypeError: add() received an invalid combination of arguments - got (Tensor), but expected (Tensor input, Tensor other, *, Number alpha, Tensor out)
结论:DLASeg使用NNI进行剪枝挑战失败!!