• 最大正方形的边长长度问题解法


    问题描述:

            给定一个N*N的矩阵matrix,只有0和1两种值,返回边框全是1的最大正方形的边长长度。

    例如:
                    0 1 1 1 1
                    0 1 0 0 1
                    0 1 0 0 1
                    0 1 1 1 1
                    0 1 0 1 1        

            其中边框全是1的最大正方形的大小为4*4,所以返回4。

    思路

            首先我们知道在N*N的举证中存在如下两个结论:

            1.边长为N的矩阵中长方形的个数数量级是O(N^4)。

            这是因为:在N*N的矩阵中随机抽取一个点的数量级为O(N^2),在N*N的矩阵中抽取两个点分别作为长方形的对角点,即长方形的数量级为O(N^2) * O(N^2) = O(N^4) 。

            2.边长为N的矩阵中正方形的个数数量级是O(N^3)。

            这是因为:在N*N的矩阵中随机抽取一个点的数量级为O(N^2),随机选取正方形边长数量级为O(N),即正方形的数量级为O(N^2) * O(N) = O(N^3) 。

            

            有上面的结论我们可以知道在举证中查找正方形的时间复杂度为O(N^3),不能再降低了(其中O(N^2)用于遍历数组中的每一个点,剩下的O(N)用于遍历正方形的边长)。在判断正方形是否都是1时,若使用暴力方法遍历所有点需要O(N)的复杂度,我们这里可以使用预处理的方法进行优化,优化后的复杂度为O(1)。

    代码

            首先定义了二维数组rowN和colN长度与原数组长度相同。

            二维数组rowN主要记录该点位置以后(包括该点)行方向上有几个连续的1。

             二维数组colN主要记录该点位置以后(包括该点)列方向上有几个连续的1。

            方法generateRowArr和generateColArr对二维数组rowN和colN进行初始化。初始化二维数组rowN时,从右往左,最右面一列内容与原数组一致,然后前一列判断原来二维数组中是否为1,若是则后一列中的值+1,若不是直接为0。初始化二维数组colN时,从下往上,最下面一列内容与原数组一致,然后上一列判断原来二维数组中是否为1,若是则下一列中的值+1,若不是直接为0。

            方法 isV 功能是用于判断新组成的正方形是否符合要求。若正方形的点位(i,j),边长为k,则只需判断 row[i][j]  col[i][j]  row[i + k-1][j]  col[i][j + k-1]  四个值是否大于或者等于k即可。

    1. public class OneMatrix {
    2. public static int oneMatrix(int[][] matrix) {
    3. if (matrix == null || matrix.length == 0) {
    4. return 0;
    5. }
    6. int rowN = matrix.length;
    7. int colN = matrix[0].length;
    8. int[][] row = new int[rowN][colN];
    9. int[][] col = new int[rowN][colN];
    10. generateRowArr(matrix, row, rowN - 1, colN - 1);
    11. generateColArr(matrix, col, rowN - 1, colN - 1);
    12. int max = 1;
    13. for (int i = 0; i < rowN; i++) {
    14. for (int j = 0; j < colN; j++) {
    15. for (int k = 1; k +i-1 < rowN && k+j-1
    16. if (isV(row, col, i, j, k)) {
    17. max = Math.max(max, k);
    18. }
    19. }
    20. }
    21. }
    22. return max;
    23. }
    24. private static boolean isV(int[][] row, int[][] col, int i, int j, int k) {
    25. int rowL = row[i][j];
    26. int colL = col[i][j];
    27. int rowLK = row[i + k-1][j];
    28. int colLK = col[i][j + k-1];
    29. if (rowL >= k && colL >= k && rowLK >= k && colLK >= k) {
    30. return true;
    31. }
    32. return false;
    33. }
    34. private static void generateRowArr(int[][] matrix, int[][] r, int row, int col) {
    35. for (int i = 0; i <= row; i++) {
    36. r[i][col] = matrix[i][col] == 1 ? 1 : 0;
    37. }
    38. for (int i = 0; i <= row; i++) {
    39. for (int j = col - 1; j >= 0; j--) {
    40. r[i][j] = matrix[i][j] == 1 ? 1 + r[i][j + 1] : 0;
    41. }
    42. }
    43. }
    44. private static void generateColArr(int[][] matrix, int[][] c, int row, int col) {
    45. for (int i = 0; i <= col; i++) {
    46. c[row][i] = matrix[row][i] == 1 ? 1 : 0;
    47. }
    48. for (int i = row - 1; i >= 0; i--) {
    49. for (int j = 0; j <= col; j++) {
    50. c[i][j] = matrix[i][j] == 1 ? 1 + c[i + 1][j] : 0;
    51. }
    52. }
    53. }
    54. public static void main(String[] args) {
    55. int[][] arr = new int[][]{
    56. {0, 1, 1, 1, 1},
    57. {0, 1, 1, 1, 1},
    58. {0, 1, 0, 1, 1},
    59. {0, 1, 1, 1, 1},
    60. {0, 1, 0, 0, 1}
    61. };
    62. System.out.println(oneMatrix(arr));
    63. }
    64. }

  • 相关阅读:
    为什么阿里巴巴建议HashMap初始化时需要指定容量大小?
    【Java快速复习】一.数据类型与结构设计
    linux命令别名
    飞书API(5):查看多维表 28 种数据类型的数据结构
    再谈回声消除测评丨Dev for Dev 专栏
    Ubuntu 20.04上docker安装RabbitMQ并确保可以访问RabbitMQ的管理界面
    echarts统计图表
    最新绿豆APP源码苹果CMS影视插件版本/原生JAVA源码+反编译开源+免授权
    Java编程练习题Demo61-Demo70
    降维算法实战项目(1)—使用PCA对二维数据降维(Python代码+数据集)
  • 原文地址:https://blog.csdn.net/z1171127310/article/details/127673968