• PINN期刊推荐总结


    0 总栏

    期刊名词分区
    Multimedia Tools and Applications42.33
    Neural computing and application25.6
    Computer methods in applied mechanics and engineering25.763
    SIAM journal on scientific computing21.97
    Communication in Computational Physics32.6
    PLoS One(公共科学图书馆)3
    Frontiers in Physics32.638
    Frontiers of Information Technology & Electronic Engineering32.161
    Nonlinear Dynamics15.022
    Applied Thermal Engineering25.295

    1 Multimedia Tools and Applications

    image.png
    image.png
    收录文章

    特点

    • 看评审周期略长,容易中,创新点要求不是很高

    2 NEURAL COMPUTING & APPLICATIONS

    image.png
    image.png
    收录文章:
    [1] A. R. Brink, D. A. Najera-Flores, and C. Martinez, “The neural network collocation method for solving partial differential equations,” Neural Comput. Appl., vol. 5, 2020, doi: 10.1007/s00521-020-05340-5.
    [2] V. I. Avrutskiy, “Neural networks catching up with finite differences in solving partial differential equations in higher dimensions,” Neural Comput. Appl., vol. 32, no. 17, pp. 13425–13440, 2020, doi: 10.1007/s00521-020-04743-8.

    3 COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    image.png
    image.png

    image.png

    [1] H. Wessels, C. Weißenfels, and P. Wriggers, “The neural particle method – An updated Lagrangian physics informed neural network for computational fluid dynamics,” Comput. Methods Appl. Mech. Eng., vol. 368, p. 113127, 2020, doi: 10.1016/j.cma.2020.113127.
    [2] M. Liu, L. Liang, and W. Sun, “A generic physics-informed neural network-based constitutive model for soft biological tissues,” Comput. Methods Appl. Mech. Eng., vol. 372, no. September, p. 113402, 2020, doi: 10.1016/j.cma.2020.113402.

    4 SIAM JOURNAL ON SCIENTIFIC COMPUTING

    image.png

    5 Communications in Computational Physics

    image.png
    收录文章
    [1] A. D. J. & G. E. Karniadakis, “Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations,” Commun. Comput. Phys., vol. 28, no. 5, pp. 2002–2041, 2020, doi: 10.4208/cicp.oa-2020-0164.
    [2] E. Weinan and B. Yu, “The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems,” Commun. Math. Stat., vol. 6, no. 1, pp. 1–14, 2018, doi: 10.1007/s40304-018-0127-z.

    6 PLoS One

    image.png

    7 Frontiers in Physics

    image.png
    收录文章
    [1] F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, and E. Kuhl, “Physics-Informed Neural Networks for Cardiac Activation Mapping,” Front. Phys., vol. 8, no. February, pp. 1–12, 2020, doi: 10.3389/fphy.2020.00042.

    8 Frontiers of Information Technology & Electronic Engineering

    收录论文
    [1] FlowDNN: a physics-informed deep neural network for fast and accurate flow prediction

    9 Nonlinear Dynamics

    Solving Huxley equation using an improved PINN method

    10 Applied Thermal Engineering

  • 相关阅读:
    vue3的生命周期
    LeetCode展平二叉搜索树
    阿里云企业邮箱的替代方案有哪些?
    聊一下C#中的lock
    速卖通双11大促期间如何让商品爆单,这些运营技巧一定要知道
    Android studio连接MySQL并完成简单的登录注册功能
    Transformer
    【CVE-2024-21626】容器逃逸漏洞修复
    gendef和pexports
    python+playwright 学习-81 page.expect_request()捕获网络请求
  • 原文地址:https://blog.csdn.net/weixin_45521594/article/details/127568088