• Python版股市情感分析源代码,提取投资者情绪,为决策提供参考


    情绪与股市关系的研究由来已久,情绪是市场的一个重要影响因素已成为共识。
    15年股灾时,亲历了一次交易灾难,眼见朋友的数千万在一周不到的时间内灰飞烟灭。那段时间市场的疯狂,让人深刻地明白:某些时候,股票市场这个抽象、复杂的系统,反映的不再是价值与供需,而仅仅是人的贪婪与恐惧。

    说明
    这份代码是股市情感分析项目的一部分,这个项目的本意是利用互联网提取投资者情绪,为投资决策的制定提供参考。
    在国内这样一个非有效的市场中,分析投资者的情绪似乎更有意义。
    这里我们利用标注语料分析股评情感,利用分析结果构建指标,之后研究指标与股市关系。
    可以按以下顺序运行代码:

    python model_ml.py
    python compute_sent_idx.py
    python plot_sent_idx.py
    数据
    数据位于data目录下,包括三部分:

    标注的股评文本:这些数据比较偏门,不是很好找,这里搜集整理了正负语料各4607条,已分词。
    从东财股吧抓取的上证指数股评文本:约50万条,时间跨度为17年4月到18年5月。东财上证指数吧十分活跃,约7秒就有人发布一条股评。
    上证指数数据:直接从新浪抓取下来的。
    模型
    情感分类模型也是文本分类模型,常用的包括机器学习模型与深度学习模型。

    model_ml.py:机器学习模型,对比测试了8个模型。
    model_dl.py:深度学习模型,对比测试了3个模型。
    结果
    在经过情感分析、指标构建这两个流程之后,我们可以得到一些有趣的结果,例如看涨情绪与股市走势的关系。
    我们使用的看涨指标公式为:
    在这里插入图片描述

    经过处理之后,“看涨”情绪与股市走势的关系可以描画出来:
    在这里插入图片描述

    这里只展示诸多关系中的一个。

    总结
    这份代码仅为了演示如何从互联网中提取投资者情绪,并研究情绪与股市的关系。
    model_ml.py

    import os
    from time import time
    import pandas as pd
    import numpy as np
    import pickle
    from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
    from sklearn.model_selection import train_test_split, cross_val_score, KFold
    from sklearn.feature_selection import SelectKBest, chi2
    from sklearn.utils.extmath import density
    from sklearn import svm
    from sklearn import naive_bayes
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.linear_model import LogisticRegression, SGDClassifier
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn import metrics
    from sklearn.utils import shuffle
    
    
    np.random.seed(42)
    
    comment_file = './data/stock_comments_seg.csv'
    data_path = './data'
    pos_corpus = 'positive.txt'
    neg_corpus = 'negative.txt'
    K_Best_Features = 3000
    
    def load_dataset():
        pos_file = os.path.join(data_path, pos_corpus)
        neg_file = os.path.join(data_path, neg_corpus)
    
        pos_sents = []
        with open(pos_file, 'r', encoding='utf-8') as f:
            for sent in f:
                pos_sents.append(sent.replace('\n', ''))
    
        neg_sents = []
        with open(neg_file, 'r', encoding='utf-8') as f:
            for sent in f:
                neg_sents.append(sent.replace('\n', ''))
    
        balance_len = min(len(pos_sents), len(neg_sents))
    
        pos_df = pd.DataFrame(pos_sents, columns=['text'])
        pos_df['polarity'] = 1
        pos_df = pos_df[:balance_len]
    
        neg_df = pd.DataFrame(neg_sents, columns=['text'])
        neg_df['polarity'] = 0
        neg_df = neg_df[:balance_len]
    
        return pd.concat([pos_df, neg_df]).reset_index(drop=True)
    #    return pd.concat([pos_df, neg_df]).sample(frac=1).reset_index(drop=True)
    
    def load_dataset_tokenized():
        pos_file = os.path.join(data_path, pos_corpus)
        neg_file = os.path.join(data_path, neg_corpus)
    
        pos_sents = []
        with open(pos_file, 'r', encoding='utf-8') as f:
            for line in f:
                tokens = line.split(' ')
                sent = []
                for t in tokens:
                    if t.strip():
                        sent.append(t.strip())
                pos_sents.append(sent)
    
        neg_sents = []
        with open(neg_file, 'r', encoding='utf-8') as f:
            for line in f:
                tokens = line.split(' ')
                sent = []
                for t in tokens:
                    if t.strip():
                        sent.append(t.strip())
                neg_sents.append(sent)
    
        balance_len = min(len(pos_sents), len(neg_sents))
    
        texts = pos_sents + neg_sents
        labels = [1] * balance_len + [0] * balance_len
    
        return texts, labels
    
    
    def KFold_validation(clf, X, y):
        acc = []
        pos_precision, pos_recall, pos_f1_score = [], [], []
        neg_precision, neg_recall, neg_f1_score = [], [], []
    
        kf = KFold(n_splits=5, shuffle=True, random_state=42)
        for train, test in kf.split(X):
            X_train = [X[i] for i in train]
            X_test = [X[i] for i in test]
            y_train = [y[i] for i in train]
            y_test = [y[i] for i in test]
    
            # vectorizer = TfidfVectorizer(analyzer='word', tokenizer=lambda x : (w for w in x.split(' ') if w.strip()))
            def dummy_fun(doc):
                return doc
    
            vectorizer = TfidfVectorizer(analyzer='word',
                                         tokenizer=dummy_fun,
                                         preprocessor=dummy_fun,
                                         token_pattern=None)
    
            vectorizer.fit(X_train)
            X_train = vectorizer.transform(X_train)
            X_test = vectorizer.transform(X_test)
    
            clf.fit(X_train, y_train)
            preds = clf.predict(X_test)
    
            acc.append(metrics.accuracy_score(y_test, preds))
            pos_precision.append(metrics.precision_score(y_test, preds, pos_label=1))
            pos_recall.append(metrics.recall_score(y_test, preds, pos_label=1))
            pos_f1_score.append(metrics.f1_score(y_test, preds, pos_label=1))
            neg_precision.append(metrics.precision_score(y_test, preds, pos_label=0))
            neg_recall.append(metrics.recall_score(y_test, preds, pos_label=0))
            neg_f1_score.append(metrics.f1_score(y_test, preds, pos_label=0))
    
    
        return (np.mean(acc), np.mean(pos_precision), np.mean(pos_recall), np.mean(pos_f1_score),
                np.mean(neg_precision), np.mean(neg_recall), np.mean(neg_f1_score))
    
    
    def benchmark_clfs():
        print('Loading dataset...')
    
        X, y = load_dataset_tokenized()
    
        classifiers = [
            ('LinearSVC', svm.LinearSVC()),
            ('LogisticReg', LogisticRegression()),
            ('SGD', SGDClassifier()),
            ('MultinomialNB', naive_bayes.MultinomialNB()),
            ('KNN', KNeighborsClassifier()),
            ('DecisionTree', DecisionTreeClassifier()),
            ('RandomForest', RandomForestClassifier()),
            ('AdaBoost', AdaBoostClassifier(base_estimator=LogisticRegression()))
        ]
    
        cols = ['metrics', 'accuracy',  'pos_precision', 'pos_recall', 'pos_f1_score', 'neg_precision', 'neg_recall', 'neg_f1_score']
        scores = []
        for name, clf in classifiers:
            score = KFold_validation(clf, X, y)
            row = [name]
            row.extend(score)
            scores.append(row)
    
        df = pd.DataFrame(scores, columns=cols).T
        df.columns = df.iloc[0]
        df.drop(df.index[[0]], inplace=True)
        df = df.apply(pd.to_numeric, errors='ignore')
    
        return df
    
    def dummy_fun(doc):
            return doc
    
    def eval_model():
        print('Loading dataset...')
    
        X, y = load_dataset_tokenized()
    
        clf = svm.LinearSVC()
    
        vectorizer = TfidfVectorizer(analyzer='word',
                                     tokenizer=dummy_fun,
                                     preprocessor=dummy_fun,
                                     token_pattern=None)
    
        X = vectorizer.fit_transform(X)
    
        print('Train model...')
        clf.fit(X, y)
    
        print('Loading comments...')
        df = pd.read_csv(comment_file)
        df.dropna(inplace=True)
        df.reset_index(drop=True, inplace=True)
        df['created_time'] = pd.to_datetime(df['created_time'], format='%Y-%m-%d %H:%M:%S')
        df['polarity'] = 0
        df['title'].apply(lambda x: [w.strip() for w in x.split()])
    
        texts = df['title']
        texts = vectorizer.transform(texts)
    
        preds = clf.predict(texts)
        df['polarity'] = preds
    
        df.to_csv('stock_comments_analyzed.csv', index=False)
    
    
    if __name__ == '__main__':
        scores = benchmark_clfs()
        print(scores)
        scores.to_csv('model_ml_scores.csv', float_format='%.4f')
    
    
        eval_model()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204

    完整源代码包下载:市情感分析源代码

    Python代码大全,海量代码任你下载

  • 相关阅读:
    如何创建多语言WordPress网站[专家建议]
    [PAT练级笔记] 29 Basic Level 1029 旧键盘
    高防CDN:构筑网络安全的钢铁长城
    关于MYSQL增量备份介绍
    VB:人民币兑换美元、欧元 、英镑
    Kitchen Racks
    Nginx配置实例-反向代理
    记录一个hive中跑insert语句说没创建spark客户端的问题
    HC32L110(四) HC32L110的startup启动文件和ld连接脚本
    Vue3+ElementUI使用
  • 原文地址:https://blog.csdn.net/weixin_42756970/article/details/127408237