【跟月影学可视化】学习笔记。
多边形又可以分为简单多边形和复杂多边形。
Canvas2D 的 fill 还支持两种填充规则:
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Canvas2D 如何填充多边形title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script type="module">
import { Vector2D } from "./common/lib/vector2d.js";
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
const { width, height } = canvas;
const w = 0.5 * width,
h = 0.5 * height;
ctx.translate(w, h);
ctx.scale(1, -1);
// 绘制坐标轴
function drawAxis() {
ctx.save();
ctx.strokeStyle = "#ccc";
ctx.beginPath();
ctx.moveTo(-w, 0);
ctx.lineTo(w, 0);
ctx.stroke();
ctx.beginPath();
ctx.moveTo(0, -h);
ctx.lineTo(0, h);
ctx.stroke();
ctx.restore();
}
drawAxis();
// nonzero:不管有没有相交的边,只要是由边围起来的区域都一律填充。
// evenodd:根据重叠区域是奇数还是偶数来判断是否填充的
function draw(
context,
points,
{ fillStyle = "salmon", close = false, rule = "nonzero" } = {}
) {
context.beginPath();
context.moveTo(...points[0]);
for (let i = 1; i < points.length; i++) {
context.lineTo(...points[i]);
}
if (close) context.closePath();
context.fillStyle = fillStyle;
context.fill(rule);
}
// 构建多边形的顶点,这里来5个
const points = [new Vector2D(0, 100)];
for (let i = 1; i <= 4; i++) {
const p = points[0].copy().rotate(i * Math.PI * 0.4);
points.push(p);
}
// 绘制正五边形
const polygon = [...points]; // polygon 数组是正五边形的顶点数组
ctx.save();
ctx.translate(-128, 0);
draw(ctx, polygon);
ctx.restore();
console.log("polygon--->", polygon);
// 绘制正五角星
const stars = [
points[0],
points[2],
points[4],
points[1],
points[3],
]; // stars 数组是把正五边形的顶点顺序交换之后,构成的五角星的顶点数组。
ctx.save();
ctx.translate(128, 0);
draw(ctx, stars);
// draw(ctx, stars, {rule: 'evenodd'});
ctx.restore();
script>
body>
html>
如果改成 rule: 'evenodd'
绘制五角星
draw(ctx, stars, {rule: 'evenodd'});
将多边形分割成若干个三角形的操作,在图形学中叫做三角剖分(Triangulation)。对 3D 模型,WebGL 在绘制的时候,也需要使用三角剖分,而 3D 的三角剖分又被称为网格化(Meshing)。
推荐学习:Delaunay Triangulation In Two and Three Dimensions
可以使用下面库来对多边形进行三角剖分:
以最简单的 Earcut 库(代码:https://github.com/mapbox/earcut/blob/master/src/earcut.js)为例,来了解 WebGL 填充多边形的过程
以下面这个多边形为例子,我们利用 Earcut 库对其进行三角剖分
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>WebGL 如何填充多边形title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script type="module">
const canvas = document.querySelector("canvas");
const gl = canvas.getContext("webgl");
const vertex = `
attribute vec2 position;
void main() {
gl_PointSize = 1.0;
gl_Position = vec4(position, 1.0, 1.0);
}
`;
const fragment = `
precision mediump float;
void main() {
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
`;
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertex);
gl.compileShader(vertexShader);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fragment);
gl.compileShader(fragmentShader);
const program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
gl.useProgram(program);
// 不规则多边形的顶点
const vertices = [
[-0.7, 0.5],
[-0.4, 0.3],
[-0.25, 0.71],
[-0.1, 0.56],
[-0.1, 0.13],
[0.4, 0.21],
[0, -0.6],
[-0.3, -0.3],
[-0.6, -0.3],
[-0.45, 0.0],
];
// 使用 Earcut 库进行三角剖分:Earcut 库只接受扁平化的定点数据
import { earcut } from "./common/lib/earcut.js";
// 使用数组的 flat 方法将顶点扁平化
const points = vertices.flat();
// 进行三角剖分
const triangles = earcut(points);
const position = new Float32Array(points);
const cells = new Uint16Array(triangles);
const pointBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pointBuffer);
gl.bufferData(gl.ARRAY_BUFFER, position, gl.STATIC_DRAW);
const vPosition = gl.getAttribLocation(program, "position");
gl.vertexAttribPointer(vPosition, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);
const cellsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, cellsBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, cells, gl.STATIC_DRAW);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, cells.length, gl.UNSIGNED_SHORT, 0);
// 用描边 LINE_STRIP 代替填充 TRIANGLES
// gl.drawElements(gl.LINE_STRIP, cells.length, gl.UNSIGNED_SHORT, 0);
script>
body>
html>
可以通过用描边 LINE_STRIP 代替填充 TRIANGLES 就可以清晰的看到这个多边形被分割成了多个三角形
// 用描边LINE_STRIP 代替填充 TRIANGLES
gl.drawElements(gl.LINE_STRIP, cells.length, gl.UNSIGNED_SHORT, 0);
注意:三角剖分后返回的数组里的值是顶点数据的 index。
判断一个点是否在多边形内部时,需要先对多边形进行三角剖分,然后判断该点是否在其中一个三角形内部。
我们先使用 canvas2d 绘制出来上面的多边形
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Canvas2D 如何判断点在多边形内部title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script type="module">
const vertices = [
[-0.7, 0.5],
[-0.4, 0.3],
[-0.25, 0.71],
[-0.1, 0.56],
[-0.1, 0.13],
[0.4, 0.21],
[0, -0.6],
[-0.3, -0.3],
[-0.6, -0.3],
[-0.45, 0.0],
];
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
const { width, height } = canvas;
ctx.translate(0.5 * width, 0.5 * height);
ctx.scale(1, -1);
const poitions = vertices.map(([x, y]) => [x * 256, y * 256]);
function draw(
ctx,
points,
strokeStyle = "salmon",
fillStyle = null
) {
ctx.strokeStyle = strokeStyle;
ctx.beginPath();
ctx.moveTo(...points[0]);
for (let i = 1; i < points.length; i++) {
ctx.lineTo(...points[i]);
}
ctx.closePath();
if (fillStyle) {
ctx.fillStyle = fillStyle;
ctx.fill();
}
ctx.stroke();
}
draw(ctx, poitions, "transparent", "salmon");
// draw(ctx, [[100, 100], [100, 200], [150, 200]], 'transparent', 'salmon');
const { left, top } = canvas.getBoundingClientRect();
canvas.addEventListener("mousemove", (evt) => {
const { x, y } = evt;
// 坐标转换
const offsetX = x - left;
const offsetY = y - top;
ctx.clearRect(-256, -256, 512, 512);
if (ctx.isPointInPath(offsetX, offsetY)) {
draw(ctx, poitions, "transparent", "green");
// draw(ctx, [[100, 100], [100, 200], [150, 200]], 'transparent', 'green');
} else {
draw(ctx, poitions, "transparent", "salmon");
// draw(ctx, [[100, 100], [100, 200], [150, 200]], 'transparent', 'salmon');
}
});
script>
body>
html>
鼠标放上去也是可以变色的
我们放开那个小多边形的注释代码
我们发现鼠标只有放在小三角形里的时候才会变色
因为 isPointInPath 方法只能对当前绘制的图形生效。仅能判断鼠标是否在最后一次绘制的小三角形内,所以大多边形就没有被识别出来。
解决方法:在绘制的过程中获取每个图形的 isPointInPath 结果。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Canvas2D 如何判断点在多边形内部2title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script type="module">
const vertices = [
[-0.7, 0.5],
[-0.4, 0.3],
[-0.25, 0.71],
[-0.1, 0.56],
[-0.1, 0.13],
[0.4, 0.21],
[0, -0.6],
[-0.3, -0.3],
[-0.6, -0.3],
[-0.45, 0.0],
];
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
const { width, height } = canvas;
ctx.translate(0.5 * width, 0.5 * height);
ctx.scale(1, -1);
const poitions = vertices.map(([x, y]) => [x * 256, y * 256]);
function draw(
ctx,
points,
strokeStyle = "salmon",
fillStyle = null
) {
ctx.strokeStyle = strokeStyle;
ctx.beginPath();
ctx.moveTo(...points[0]);
for (let i = 1; i < points.length; i++) {
ctx.lineTo(...points[i]);
}
ctx.closePath();
if (fillStyle) {
ctx.fillStyle = fillStyle;
ctx.fill();
}
ctx.stroke();
}
function isPointInPath(ctx, x, y) {
// 根据ctx重新clone一个新的canvas对象出来
const cloned = ctx.canvas.cloneNode().getContext("2d");
cloned.translate(0.5 * width, 0.5 * height);
cloned.scale(1, -1);
let ret = false;
// 绘制多边形,然后判断点是否在图形内部
draw(cloned, poitions, "transparent", "salmon");
ret |= cloned.isPointInPath(x, y);
if (!ret) {
// 如果不在,在绘制小三角形,然后判断点是否在图形内部
draw(cloned, [[100, 100], [100, 200], [150, 200]], 'transparent', 'salmon');
ret |= cloned.isPointInPath(x, y);
}
return ret;
}
draw(ctx, poitions, "transparent", "salmon");
draw(ctx, [[100, 100], [100, 200], [150, 200]], 'transparent', 'salmon');
const { left, top } = canvas.getBoundingClientRect();
canvas.addEventListener("mousemove", (evt) => {
const { x, y } = evt;
// 坐标转换
const offsetX = x - left;
const offsetY = y - top;
ctx.clearRect(-256, -256, 512, 512);
if (isPointInPath(ctx, offsetX, offsetY)) {
draw(ctx, poitions, "transparent", "green");
draw(ctx, [[100, 100], [100, 200], [150, 200]], 'transparent', 'green');
} else {
draw(ctx, poitions, "transparent", "salmon");
draw(ctx, [[100, 100], [100, 200], [150, 200]], 'transparent', 'salmon');
}
});
script>
body>
html>
三角形有一个非常简单的方法可以判断点是否在其中。
已知一个三角形的三条边分别是向量 a、b、c,平面上一点 u 连接三角形三个顶点的向量分别为 u1、u2、u3,那么 u 点在三角形内部的充分必要条件是:u1 X a、u2 X b、u3 X c 的符号相同。
当点 u 在三角形 a、b、c 内时,因为 u1到 a、u2到 b、u3到 c 的小角旋转方向是相同的(这里都为顺时针),所以 u1 X a、u2 X b、u3 X c 要么同正,要么同负。当点 v 在三角形外时,v1到 a 方向是顺时针,v2到 b 方向是逆时针,v3到 c 方向又是顺时针,所以它们叉乘的结果符号并不相同。
左图是点u和a不在一条直线上,右图是点u和a在一条直线上
只有当 u1 和 a 的比值在 0 到 1 之间时,才能说明点在三角形的边上。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>实现通用的 isPointInPath 方法title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script type="module">
import { Vector2D } from "./common/lib/vector2d.js";
import { earcut } from "./common/lib/earcut.js";
// 判断点是否在三角形里面
function inTriangle(p1, p2, p3, point) {
const a = p2.copy().sub(p1);
const b = p3.copy().sub(p2);
const c = p1.copy().sub(p3);
const u1 = point.copy().sub(p1);
const u2 = point.copy().sub(p2);
const u3 = point.copy().sub(p3);
const s1 = Math.sign(a.cross(u1));
let p = a.dot(u1) / a.length ** 2;
if (s1 === 0 && p >= 0 && p <= 1) return true;
const s2 = Math.sign(b.cross(u2));
p = b.dot(u1) / b.length ** 2;
if (s2 === 0 && p >= 0 && p <= 1) return true;
const s3 = Math.sign(c.cross(u3));
p = c.dot(u1) / c.length ** 2;
if (s3 === 0 && p >= 0 && p <= 1) return true;
return s1 === s2 && s2 === s3;
}
// 判断点是否在多边形里面
function isPointInPath({ vertices, cells }, point) {
let ret = false;
for (let i = 0; i < cells.length; i += 3) {
const p1 = new Vector2D(...vertices[cells[i]]);
const p2 = new Vector2D(...vertices[cells[i + 1]]);
const p3 = new Vector2D(...vertices[cells[i + 2]]);
if (inTriangle(p1, p2, p3, point)) {
ret = true;
break;
}
}
return ret;
}
const canvas = document.querySelector("canvas");
const gl = canvas.getContext("webgl");
const vertex = `
attribute vec2 position;
uniform vec4 u_color;
varying vec4 vColor;
void main() {
gl_PointSize = 1.0;
gl_Position = vec4(position, 1.0, 1.0);
vColor = u_color;
}
`;
const fragment = `
precision mediump float;
varying vec4 vColor;
void main() {
gl_FragColor = vColor;
}
`;
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertex);
gl.compileShader(vertexShader);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fragment);
gl.compileShader(fragmentShader);
const program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
gl.useProgram(program);
const vertices = [
[-0.7, 0.5],
[-0.4, 0.3],
[-0.25, 0.71],
[-0.1, 0.56],
[-0.1, 0.13],
[0.4, 0.21],
[0, -0.6],
[-0.3, -0.3],
[-0.6, -0.3],
[-0.45, 0.0],
];
const points = vertices.flat();
const triangles = earcut(points);
console.log("triangles---->", triangles);
const position = new Float32Array(points);
const cells = new Uint16Array(triangles);
const pointBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pointBuffer);
gl.bufferData(gl.ARRAY_BUFFER, position, gl.STATIC_DRAW);
const vPosition = gl.getAttribLocation(program, "position");
gl.vertexAttribPointer(vPosition, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);
const cellsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, cellsBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, cells, gl.STATIC_DRAW);
const colorLoc = gl.getUniformLocation(program, "u_color");
gl.uniform4fv(colorLoc, [1, 0, 0, 1]);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, cells.length, gl.UNSIGNED_SHORT, 0);
const { left, top } = canvas.getBoundingClientRect();
canvas.addEventListener("mousemove", (evt) => {
const { x, y } = evt;
// 坐标转换
const offsetX = (2 * (x - left)) / canvas.width - 1.0;
const offsetY = 1.0 - (2 * (y - top)) / canvas.height;
gl.clear(gl.COLOR_BUFFER_BIT);
const colorLoc = gl.getUniformLocation(program, "u_color");
if (
isPointInPath(
{ vertices, cells },
new Vector2D(offsetX, offsetY)
)
) {
gl.uniform4fv(colorLoc, [0, 0.5, 0, 1]);
} else {
gl.uniform4fv(colorLoc, [1, 0, 0, 1]);
}
gl.drawElements(gl.TRIANGLES, cells.length, gl.UNSIGNED_SHORT, 0);
});
script>
body>
html>
鼠标悬浮效果如下: