X = ( x 1 x 2 ⋯ x N ) T = ( x 1 T x 2 T ⋮ x N T ) N × p , Y = ( y 1 y 2 ⋮ y N ) N × 1 { ( x i , y i ) } i = 1 N , x i ∈ R p , y i ∈ { + 1 , − 1 } x C 1 = { x i ∣ y i = + 1 } , x C 2 = { x i ∣ y i = − 1 } ∣ x C 1 ∣ = N 1 , ∣ x C 2 ∣ = N 2 , N 1 + N 2 = N
X=(x1x2⋯xN)T=⎝⎛x1Tx2T⋮xNT⎠⎞N×p,Y=⎝⎛y1y2⋮yN⎠⎞N×1{
(xi,yi)}i=1N,xi∈Rp,yi∈{
+1,−1}xC1={
xi∣yi=+1},xC2={
xi∣yi=−1}∣xC1∣=N1,∣xC2∣=N2,N1+N2=N 设 z i = ω T x i z_{i}=\omega^{T}x_{i} zi=ωTxi 显然这是个实数,可以看做 x i x_{i} xi在 ω \omega ω上的投影 模型要求类内小,可以用方差矩阵来衡量类内样本的聚散程度 z ˉ = 1 N ∑ i = 1 N z i = 1 N ∑ i = 1 N ω T x i C 1 : z 1 ˉ = 1 N 1 ∑ i = 1 N 1 ω T x i S 1 = 1 N 1 ∑ i = 1 N 1 ( ω T x i − z 1 ˉ ) ( ω T x i − z 1 ˉ ) T = 1 N 1 ∑ i = 1 N 1 ( ω T x i − 1 N 1 ∑ j = 1 N 1 ω T x j ) ( ω T x i − 1 N 1 ∑ j = 1 N 1 ω T x j ) T 这里定义 1 N 1 ∑ j = 1 N 1 x j = x C 1 ‾ = 1 N 1 ∑ i = 1 N 1 ω T ( x i − x C 1 ‾ ) ( x i − x C 1 ‾ ) T ω = ω T ( 1 N 1 ∑ i = 1 N 1 ( x i − x C 1 ‾ ) ( x i − x C 1 ‾ ) T ) ω 这里定义 1 N 1 ∑ i = 1 N 1 ( x i − x C 1 ‾ ) ( x i − x C 1 ‾ ) T = S C 1 = ω T S C 1 ω C 2 : z 2 ˉ = 1 N 2 ∑ i = 1 N 2 ω T x i S 2 = ω T S C 2 ω