• 【白板推导系列笔记】线性分类-线性判别分析(Fisher)-模型定义


    线性判别分析的思想是,找的一个方向 ω \omega ω,将样本向这个方向做投影,投影后的数据尽可能的满足

    1. 相同类内部的样本的投影尽可能接近
    2. 不同类之间的距离尽可能较大

    总结为类内小,类间大

    X = ( x 1 x 2 ⋯ x N ) T = ( x 1 T x 2 T ⋮ x N T ) N × p , Y = ( y 1 y 2 ⋮ y N ) N × 1 { ( x i , y i ) } i = 1 N , x i ∈ R p , y i ∈ { + 1 , − 1 } x C 1 = { x i ∣ y i = + 1 } , x C 2 = { x i ∣ y i = − 1 } ∣ x C 1 ∣ = N 1 , ∣ x C 2 ∣ = N 2 , N 1 + N 2 = N

    X=(x1x2xN)T=(x1Tx2TxNT)N×p,Y=(y1y2yN)N×1{(xi,yi)}i=1N,xiRp,yi{+1,1}xC1={xi|yi=+1},xC2={xi|yi=1}|xC1|=N1,|xC2|=N2,N1+N2=N" role="presentation">X=(x1x2xN)T=(x1Tx2TxNT)N×p,Y=(y1y2yN)N×1{(xi,yi)}i=1N,xiRp,yi{+1,1}xC1={xi|yi=+1},xC2={xi|yi=1}|xC1|=N1,|xC2|=N2,N1+N2=N
    X=(x1x2xN)T= x1Tx2TxNT N×p,Y= y1y2yN N×1{ (xi,yi)}i=1N,xiRp,yi{ +1,1}xC1={ xiyi=+1},xC2={ xiyi=1}xC1=N1,xC2=N2,N1+N2=N

    z i = ω T x i z_{i}=\omega^{T}x_{i} zi=ωTxi
    显然这是个实数,可以看做 x i x_{i} xi ω \omega ω上的投影
    模型要求类内小,可以用方差矩阵来衡量类内样本的聚散程度
    z ˉ = 1 N ∑ i = 1 N z i = 1 N ∑ i = 1 N ω T x i C 1 : z 1 ˉ = 1 N 1 ∑ i = 1 N 1 ω T x i S 1 = 1 N 1 ∑ i = 1 N 1 ( ω T x i − z 1 ˉ ) ( ω T x i − z 1 ˉ ) T = 1 N 1 ∑ i = 1 N 1 ( ω T x i − 1 N 1 ∑ j = 1 N 1 ω T x j ) ( ω T x i − 1 N 1 ∑ j = 1 N 1 ω T x j ) T 这里定义 1 N 1 ∑ j = 1 N 1 x j = x C 1 ‾ = 1 N 1 ∑ i = 1 N 1 ω T ( x i − x C 1 ‾ ) ( x i − x C 1 ‾ ) T ω = ω T ( 1 N 1 ∑ i = 1 N 1 ( x i − x C 1 ‾ ) ( x i − x C 1 ‾ ) T ) ω 这里定义 1 N 1 ∑ i = 1 N 1 ( x i − x C 1 ‾ ) ( x i − x C 1 ‾ ) T = S C 1 = ω T S C 1 ω C 2 : z 2 ˉ = 1 N 2 ∑ i = 1 N 2 ω T x i S 2 = ω T S C 2 ω
    z¯=1Ni=1Nzi=1Ni=1NωTxiC1:z1¯=1N1i=1N1ωTxiS1=1N1i=1N1(ωTxiz1¯)(ωTxiz1¯)T=1N1i=1N1(ωTxi1N1j=1N1ωTxj)(ωTxi1N1j=1N1ωTxj)T1N1j=1N1xj=xC1¯=1N1i=1N1ωT(xixC1¯)(xixC1¯)Tω=ωT(1N1i=1N1(xixC1¯)(xixC1¯)T)ω1N1i=1N1(xixC1¯)(xixC1¯)T=SC1=ωTSC1ωC2:z2¯=1N2i=1N2ωTxiS2=ωTSC2ω" role="presentation">z¯=1Ni=1Nzi=1Ni=1NωTxiC1:z1¯=1N1i=1N1ωTxiS1=1N1i=1N1(ωTxiz1¯)(ωTxiz1¯)T=1N1i=1N1(ωTxi1N1j=1N1ωTxj)(ωTxi1N1j=1N1ωTxj)T1N1j=1N1xj=xC1¯=1N1i=1N1ωT(xixC1¯)(xixC1¯)Tω=ωT(1N1i=1N1(xixC1¯)(xixC1¯)T)ω1N1i=1N1(xixC1¯)(xixC1¯)T=SC1=ωTSC1ωC2:z2¯=1N2i=1N2ωTxiS2=ωTSC2ω
    zˉC1:z1

  • 相关阅读:
    腾讯云服务器简介_CVM优势_常见问题解答
    PS画布基本操作 新建保存 图片类型区分设置
    Mac PHP7.4安装
    flutter实践:慎用Expanded
    喜新厌旧?IT公司为什么宁愿花20k招人,也不愿涨薪留住老员工
    非谓语动词练习
    软件测试面试常见问题及答案(发散思维、接口、性能、概念、)
    小球反弹(蓝桥杯)
    java开发技巧
    LeetCode 0228. 汇总区间
  • 原文地址:https://blog.csdn.net/liu20020918zz/article/details/127126799