1、转置矩阵:
A
=
(
3
2
1
1
2
3
2
3
1
)
A =
2、对角矩阵:
(
2
0
0
0
3
0
0
0
1
)
3、上下三角矩阵:
(
1
2
3
0
2
3
0
0
1
)
4、单位矩阵:
(
1
0
0
0
1
0
0
0
1
)
=
E
=
I
5、正交矩阵:若 n n n 阶方阵 A A A,满足 A A T = E AA^T=E AAT=E,称 A A A 为正交矩阵
6、对称矩阵: A T = T A^T=T AT=T
1、加法、减法:矩阵对应元素位置直接进行加减法运算,矩阵形状不发生改变;
2、乘法:左行乘右列(矩阵能够进行乘法的前提是:矩阵的左行等于右列);
矩阵运算不一定满足交换律: A B ≠ B A AB \not= BA AB=BA
数乘分配律:
(
λ
+
μ
)
A
=
λ
A
+
μ
A
(\lambda + \mu)A = \lambda A + \mu A
(λ+μ)A=λA+μA
λ ( A + B ) = λ A + λ B \lambda(A+ B) = \lambda A + \lambda B λ(A+B)=λA+λB
矩阵分配律:
(
A
B
)
C
=
A
(
B
C
)
(AB)C = A(BC)
(AB)C=A(BC)
A ( B + C ) A B + A C A(B+C) AB + AC A(B+C)AB+AC
( B + C ) A = B A + C A (B + C)A = BA + CA (B+C)A=BA+CA
E A = A E = A EA =AE =A EA=AE=A
转置相关性质:
(
A
T
)
T
=
A
(A^T)^T = A
(AT)T=A
( A + B ) T = A T + B T (A + B)^T = A^T + B^T (A+B)T=AT+BT
( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT(有些特殊)
模的性质:
∣
A
⋅
B
∣
=
∣
A
∣
⋅
∣
B
∣
|A \cdot B| = |A| \cdot |B|
∣A⋅B∣=∣A∣⋅∣B∣
∣ λ A ∣ = λ n ∣ A ∣ |\lambda A| = \lambda^n|A| ∣λA∣=λn∣A∣ ( n n n 为矩阵 A A A 的阶数)