( 1 ) a ⋅ b = ( 3 , − 1 , − 2 ) ⋅ ( 1 , 2 , − 1 ) = 3 × 1 + ( − 1 ) × 2 + ( − 2 ) × ( − 1 ) = 3 a × b = ∣ i j k 3 − 1 − 2 1 2 − 1 ∣ = ( 5 , 1 , 7 ) . ( 2 ) ( − 2 a ) ⋅ 3 b = − 6 ( a ⋅ b ) = − 6 × = − 18 , a × 2 b = 2 ( a × b ) = 2 ( 5 , 1 , 7 ) = ( 10 , 2 , 14 ) . ( 3 ) c o s ( a , b ^ ) = a ⋅ b ∣ a ∣ ∣ b ∣ = 3 3 2 + ( − 1 ) 2 + ( − 2 ) 2 1 2 + 2 2 + ( − 1 ) 2 = 3 2 21 . (1) a⋅b=(3, −1, −2)⋅(1, 2, −1)=3×1+(−1)×2+(−2)×(−1)=3 a×b=|ijk3−1−212−1|=(5, 1, 7). (2) (−2a)⋅3b=−6(a⋅b)=−6×=−18, a×2b=2(a×b)=2(5, 1, 7)=(10, 2, 14). (3) cos (^a, b)=a⋅b|a| |b|=3√32+(−1)2+(−2)2√12+22+(−1)2=32√21. (1) a⋅b=(3, −1, −2)⋅(1, 2, −1)=3×1+(−1)×2+(−2)×(−1)=3 a×b=∣ ∣i31j−12k−2−1∣ ∣=(5, 1, 7). (2) (−2a)⋅3b=−6(a⋅b)=−6×=−18, a×2b=2(a×b)=2(5, 1, 7)=(10, 2, 14). (3) cos (a, b )=∣a∣ ∣b∣a⋅b=32+(−1)2+(−2)212+22+(−1)23=2213.
已知 ∣ a ∣ = ∣ b ∣ = ∣ c ∣ = 1 , a + b + c = 0 ,所以 ( a + b + c ) ⋅ ( a + b + c ) = 0 , 即 ∣ a ∣ 2 + ∣ b ∣ 2 + ∣ c ∣ 2 + 2 a ⋅ b + 2 b ⋅ c + 2 c ⋅ a = 0 ,所以 a ⋅ b + b ⋅ c + c ⋅ a = − 1 2 ( ∣ a ∣ 2 + ∣ b ∣ 2 + ∣ c ∣ 2 ) = − 3 2 . 已知|a|=|b|=|c|=1,a+b+c=0,所以(a+b+c)⋅(a+b+c)=0, 即|a|2+|b|2+|c|2+2a⋅b+2b⋅c+2c⋅a=0,所以a⋅b+b⋅c+c⋅a=−12(|a|2+|b|2+|c|2)=−32. 已知∣a∣=∣b∣=∣c∣=1,a+b+c=0,所以(a+b+c)⋅(a+b+c)=0, 即∣a∣2+∣b∣2+∣c∣2+2a⋅b+2b⋅c+2c⋅a=0,所以a⋅b+b⋅c+c⋅a=−21(∣a∣2+∣b∣2+∣c∣2)=−23.
M 1 M 2 → = ( 3 − 1 , 3 − ( − 1 ) , 1 − 2 ) = ( 2 , 4 , − 1 ) , M 2 M 3 → = ( 3 − 3 , 1 − 3 , 3 − 1 ) = ( 0 , − 2 , 2 ) , 因为 M 1 M 2 → × M 2 M 3 → 与 M 1 M 2 → , M 2 M 3 → 同时垂直,所以所求向量可取为 a = ± ( M 1 M 2 → × M 2 M 3 → ) ∣ M 1 M 2 → × M 2 M 3 → ∣ , 由于 M 1 M 2 → × M 2 M 3 → = ∣ i j k 2 4 − 1 0 − 2 2 ∣ = ( 6 , − 4 , − 4 ) , ∣ M 1 M 2 → × M 2 M 3 → ∣ = 6 2 + ( − 4 ) 2 + ( − 4 ) 2 = 2 17 , 则 a = ± 1 2 17 ( 6 , − 4 , − 4 ) = ± ( 3 17 , − 2 17 , − 2 17 ) . →M1M2=(3−1, 3−(−1), 1−2)=(2, 4, −1),→M2M3=(3−3, 1−3, 3−1)=(0, −2, 2), 因为→M1M2×→M2M3与→M1M2,→M2M3同时垂直,所以所求向量可取为a=±(→M1M2×→M2M3)|→M1M2×→M2M3|, 由于→M1M2×→M2M3=|ijk24−10−22|=(6, −4, −4),|→M1M2×→M2M3|=√62+(−4)2+(−4)2=2√17, 则a=±12√17(6, −4, −4)=±(3√17, −2√17, −2√17). M1M2=(3−1, 3−(−1), 1−2)=(2, 4, −1),M2M3=(3−3, 1−3, 3−1)=(0, −2, 2), 因为M1M2×M2M3与M1M2,M2M3同时垂直,所以所求向量可取为a=∣M1M2×M2M3∣±(M1M2×M2M3), 由于M1M2×M2M3=∣ ∣i20j4−2k−12∣ ∣=(6, −4, −4),∣M1M2×M2M3∣=62+(−4)2+(−4)2=217, 则a=217±1(6, −4, −4)=±(173, −172, −172).
M 1 M 2 → = ( 1 − 3 , 4 − 1 , 2 − 8 ) = ( − 2 , 3 , − 6 ) , F = ( 0 , 0 , − 100 × 9.8 ) = ( 0 , 0 , − 980 ) , W = F ⋅ M 1 M 2 → = ( 0 , 0 , − 980 ) ⋅ ( − 2 , 3 , − 6 ) = 5880 ( J ) →M1M2=(1−3, 4−1, 2−8)=(−2, 3, −6),F=(0, 0, −100×9.8)=(0, 0, −980), W=F⋅→M1M2=(0, 0, −980)⋅(−2, 3, −6)=5880 (J) M1M2=(1−3, 4−1, 2−8)=(−2, 3, −6),F=(0, 0, −100×9.8)=(0, 0, −980), W=F⋅M1M2=(0, 0, −980)⋅(−2, 3, −6)=5880 (J)

已知固定转轴的物体的平衡条件是力矩的代数和为零,又因为对力矩正负符号的规定可得杠杆保持平衡 的条件为 ∣ F 1 ∣ x 1 s i n θ 1 − ∣ F 2 ∣ x 2 s i n θ 2 = 0 ,即 ∣ F 1 ∣ x 1 s i n θ 1 = ∣ F 2 ∣ x 2 s i n θ 2 . 已知固定转轴的物体的平衡条件是力矩的代数和为零,又因为对力矩正负符号的规定可得杠杆保持平衡 的条件为|F1|x1sin θ1−|F2|x2sin θ2=0,即|F1|x1sin θ1=|F2|x2sin θ2. 已知固定转轴的物体的平衡条件是力矩的代数和为零,又因为对力矩正负符号的规定可得杠杆保持平衡 的条件为∣F1∣x1sin θ1−∣F2∣x2sin θ2=0,即∣F1∣x1sin θ1=∣F2∣x2sin θ2.
P r j b a = a ⋅ b ∣ b ∣ = ( 4 , − 3 , 4 ) ⋅ ( 2 , 2 , 1 ) 2 2 + 2 2 + 1 2 = 2 Prjba=a⋅b|b|=(4, −3, 4)⋅(2, 2, 1)√22+22+12=2 Prjba=∣b∣a⋅b=22+22+12(4, −3, 4)⋅(2, 2, 1)=2
λ a + μ b = λ ( 3 , 5 , − 2 ) + μ ( 2 , 1 , 4 ) = ( 3 λ + 2 μ , 5 λ + μ , − 2 λ + 4 μ ) ,要使 λ a + μ b 与 z 轴垂直, 即要 ( λ a + μ b ) ⊥ ( 0 , 0 , 1 ) ,即 ( λ a + μ b ) ⋅ ( 0 , 0 , 1 ) = 0 , ( 3 λ + 2 μ , 5 λ + μ , − 2 λ + 4 μ ) ⋅ ( 0 , 0 , 1 ) = 0 , 所以 − 2 λ + 4 μ = 0 ,因此当 λ = 2 μ 时能使 λ a + μ b 与 z 轴垂直。 λa+μb=λ(3, 5, −2)+μ(2, 1, 4)=(3λ+2μ, 5λ+μ, −2λ+4μ),要使λa+μb与z轴垂直, 即要(λa+μb)⊥(0, 0, 1),即(λa+μb)⋅(0, 0, 1)=0,(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0, 所以−2λ+4μ=0,因此当λ=2μ时能使λa+μb与z轴垂直。 λa+μb=λ(3, 5, −2)+μ(2, 1, 4)=(3λ+2μ, 5λ+μ, −2λ+4μ),要使λa+μb与z轴垂直, 即要(λa+μb)⊥(0, 0, 1),即(λa+μb)⋅(0, 0, 1)=0,(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0, 所以−2λ+4μ=0,因此当λ=2μ时能使λa+μb与z轴垂直。
如图
8
−
7
,设
A
B
是圆
O
的直径,
C
点在圆周上,要证
∠
A
C
B
=
π
2
,只要证
A
C
→
⋅
B
C
→
=
0
即可,
A
C
→
⋅
B
C
→
=
(
A
O
→
+
O
C
→
)
⋅
(
B
O
→
+
O
C
→
)
=
A
O
→
⋅
B
O
→
+
A
O
→
⋅
O
C
→
+
O
C
→
⋅
B
O
→
+
∣
O
C
→
∣
2
=
−
∣
A
O
→
∣
2
+
A
O
→
⋅
O
C
→
−
A
O
→
⋅
O
C
→
+
∣
O
C
→
∣
2
=
0
,所以
A
C
→
⊥
B
C
→
,
∠
A
C
B
为直角。
如图8−7,设AB是圆O的直径,C点在圆周上,要证∠ACB=π2,只要证→AC⋅→BC=0即可, →AC⋅→BC=(→AO+→OC)⋅(→BO+→OC)=→AO⋅→BO+→AO⋅→OC+→OC⋅→BO+|→OC|2= −|→AO|2+→AO⋅→OC−→AO⋅→OC+|→OC|2=0,所以→AC⊥→BC,∠ACB为直角。
如图8−7,设AB是圆O的直径,C点在圆周上,要证∠ACB=2π,只要证AC⋅BC=0即可, AC⋅BC=(AO+OC)⋅(BO+OC)=AO⋅BO+AO⋅OC+OC⋅BO+∣OC∣2= −∣AO∣2+AO⋅OC−AO⋅OC+∣OC∣2=0,所以AC⊥BC,∠ACB为直角。

( 1 ) a ⋅ b = ( 2 , − 3 , 1 ) ⋅ ( 1 , − 1 , 3 ) = 8 , a ⋅ c = ( 2 , − 3 , 1 ) ⋅ ( 1 , − 2 , 0 ) = 8 , ( a ⋅ b ) c − ( a ⋅ c ) b = 8 ( 1 , − 2 , 0 ) − 8 ( 1 , − 1 , 3 ) = ( 0 , − 8 , − 24 ) = − 8 j − 24 k . ( 2 ) a + b = ( 2 , − 3 , 1 ) + ( 1 , − 3 , 3 ) = ( 3 , − 4 , 4 ) , b + c = ( 1 , − 1 , 3 ) + ( 1 , − 2 , 0 ) = ( 2 , − 3 , 3 ) , ( a + b ) × ( b + c ) = ∣ i j k 3 − 4 4 2 − 3 3 ∣ = ( 0 , − 1 , − 1 ) = − j − k . ( 3 ) ( a × b ) ⋅ c = ∣ 2 − 3 1 1 − 1 3 1 − 2 0 ∣ = 2. (1) a⋅b=(2, −3, 1)⋅(1, −1, 3)=8,a⋅c=(2, −3, 1)⋅(1, −2, 0)=8, (a⋅b)c−(a⋅c)b=8(1, −2, 0)−8(1, −1, 3)=(0, −8, −24)=−8j−24k. (2) a+b=(2, −3, 1)+(1, −3, 3)=(3, −4, 4),b+c=(1, −1, 3)+(1, −2, 0)=(2, −3, 3), (a+b)×(b+c)=|ijk3−442−33|=(0, −1, −1)=−j−k. (3) (a×b)⋅c=|2−311−131−20|=2. (1) a⋅b=(2, −3, 1)⋅(1, −1, 3)=8,a⋅c=(2, −3, 1)⋅(1, −2, 0)=8, (a⋅b)c−(a⋅c)b=8(1, −2, 0)−8(1, −1, 3)=(0, −8, −24)=−8j−24k. (2) a+b=(2, −3, 1)+(1, −3, 3)=(3, −4, 4),b+c=(1, −1, 3)+(1, −2, 0)=(2, −3, 3), (a+b)×(b+c)=∣ ∣i32j−4−3k43∣ ∣=(0, −1, −1)=−j−k. (3) (a×b)⋅c=∣ ∣211−3−1−2130∣ ∣=2.
S △ O A B = 1 2 ∣ O A → × O B → ∣ , O A → × O B → = ∣ i j k 1 0 3 0 1 3 ∣ = ( − 3 , − 3 , 1 ) , ∣ O A → × O B → ∣ = ( − 3 ) 2 + ( − 3 ) 2 + 1 = 19 . 所以, S △ O A B = 19 2 . S△OAB=12|→OA×→OB|,→OA×→OB=|ijk103013|=(−3, −3, 1), |→OA×→OB|=√(−3)2+(−3)2+1=√19.所以,S△OAB=√192. S△OAB=21∣OA×OB∣,OA×OB=∣ ∣i10j01k33∣ ∣=(−3, −3, 1), ∣OA×OB∣=(−3)2+(−3)2+1=19.所以,S△OAB=219.
因 ( a × b ) ⋅ c = ∣ a x a y a z b x b y b z c x c y c z ∣ , ( b × c ) ⋅ a = ∣ b x b y b z c x c y c z a x a y a z ∣ , ( c × a ) ⋅ b = ∣ c x c y c z a x a y a z b x b y b z ∣ , 根据行列式性质可知 ∣ a x a y a z b x b y b z c x c y c z ∣ = ∣ b x b y b z c x c y c z a x a y a z ∣ = ∣ c x c y c z a x a y a z b x b y b z ∣ , 所以, ( a × b ) ⋅ c = ( b × c ) ⋅ a = ( c × a ) ⋅ b 因(a×b)⋅c=|axayazbxbybzcxcycz|,(b×c)⋅a=|bxbybzcxcyczaxayaz|,(c×a)⋅b=|cxcyczaxayazbxbybz|, 根据行列式性质可知|axayazbxbybzcxcycz|=|bxbybzcxcyczaxayaz|=|cxcyczaxayazbxbybz|, 所以,(a×b)⋅c=(b×c)⋅a=(c×a)⋅b 因(a×b)⋅c=∣ ∣axbxcxaybycyazbzcz∣ ∣,(b×c)⋅a=∣ ∣bxcxaxbycyaybzczaz∣ ∣,(c×a)⋅b=∣ ∣cxaxbxcyaybyczazbz∣ ∣, 根据行列式性质可知∣ ∣axbxcxaybycyazbzcz∣ ∣=∣ ∣bxcxaxbycyaybzczaz∣ ∣=∣ ∣cxaxbxcyaybyczazbz∣ ∣, 所以,(a×b)⋅c=(b×c)⋅a=(c×a)⋅b
设向量 a = ( a 1 , a 2 , a 3 ) , b = ( b 1 , b 2 , b 3 ) ,由 a ⋅ b = ∣ a ∣ ∣ b ∣ c o s ( a , b ^ ) 可知, ∣ a ⋅ b ∣ = ∣ a ∣ ∣ b ∣ ∣ c o s ( a , b ^ ) ∣ ≤ ∣ a ∣ ∣ b ∣ , 从而 ∣ a 1 b 1 + a 2 b 2 + a 3 b 3 ∣ ≤ a 1 2 + a 2 2 + a 3 2 b 1 2 + b 2 2 + b 3 2 ,当 a 1 , a 2 , a 3 与 b 1 , b 2 , b 3 成比例,即 a 1 b 1 = a 2 b 2 = a 3 b 3 时, 上述等式成立。 设向量a=(a1, a2, a3),b=(b1, b2, b3),由a⋅b=|a| |b| cos (^a, b)可知,|a⋅b|=|a| |b| |cos (^a, b)|≤|a| |b|, 从而|a1b1+a2b2+a3b3|≤√a21+a22+a23√b21+b22+b23,当a1,a2,a3与b1,b2,b3成比例,即a1b1=a2b2=a3b3时, 上述等式成立。 设向量a=(a1, a2, a3),b=(b1, b2, b3),由a⋅b=∣a∣ ∣b∣ cos (a, b )可知,∣a⋅b∣=∣a∣ ∣b∣ ∣cos (a, b )∣≤∣a∣ ∣b∣, 从而∣a1b1+a2b2+a3b3∣≤a12+a22+a32b12+b22+b32,当a1,a2,a3与b1,b2,b3成比例,即b1a1=b2a2=b3a3时, 上述等式成立。