• 网络神经算法程序是什么,网络神经算法程序设计


    如何用70行java代码实现深度神经网络算法

    神经网络结构如下图所示,最左边的是输入层,最右边的是输出层,中间是多个隐含层,对于隐含层和输出层的每个神经节点,都是由上一层节点乘以其权重累加得到,标上“+1”的圆圈为截距项b,对输入层外每个节点:Y=w0*x0+w1*x1+...+wn*xn+b,由此我们可以知道神经网络相当于一个多层逻辑回归的结构。

    import .Random;public class BpDeep{ public double[][] layer;//神经网络各层节点 public double[][] layerErr;//神经网络各节点误差 public double[][][] layer_weight;//各层节点权重 public double[][][] layer_weight_delta;//各层节点权重动量 public double mobp;//动量系数 public double rate;//学习系数 public BpDeep(int[] layernum, double rate, double mobp){ = mobp; = rate; layer = new double[layernum.length][]; layerErr = new double[layernum.length][]; layer_weight = new double[layernum.length][][]; layer_weight_delta = new double[layernum.length][][]; Random random = new Random(); for(int l=0;l。

    谷歌人工智能写作项目:神经网络伪原创

    如何用70行Java代码实现神经网络算法

    如何用70行Java代码实现神经网络算法import .Random;public class BpDeep{public double[][] layer;//神经网络各层节点public double[][] layerErr;//神经网络各节点误差public double[][][] layer_weight;//各层节点权重public double[][][] layer_weight_delta;//各层节点权重动量public double mobp;//动量系数public double rate;//学习系数public BpDeep(int[] layernum, double rate, double mobp){ = mobp; = rate;layer = new double[layernum.length][];layerErr = new double[layernum.length][];layer_weight = new double[layernum.length][][];layer_weight_delta = new double[layernum.length][][];Random random = new Random();for(int l=0;l文案狗

    神经网络算法实例说明有哪些?

    在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。

    纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

    rbf神经网络算法是什么?

    RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换。

    RBF神经网络进行数据运算时需要确认聚类中心点的位置及隐层至输出层的权重。通常,选用K-means聚类算法或最小正交二乘法对数据大量的进行训练得出聚类中心矩阵和权重矩阵。

    一般情况下,最小正交二乘法聚类中心点的位置是给定的,因此比较适合分布相对规律的数据。而K-means聚类算法则会自主选取聚类中心,进行无监督分类学习,从而完成空间映射关系。

    RBF网络特点RBF网络能够逼近任意非线性的函数(因为使用的是一个局部的激活函数。在中心点附近有最大的反应;越接近中心点则反应最大,远离反应成指数递减;就相当于每个神经元都对应不同的感知域)。

    可以处理系统内难以解析的规律性,具有很好的泛化能力,并且具有较快的学习速度。

    有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

    当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢,比如BP网络。

    求神经网络算法的一个代码示例(C、C++或java一类的)

     

  • 相关阅读:
    SpringBoot SpringBoot 开发实用篇 4 数据层解决方案 4.15 ES 文档操作
    听我劝,自学游戏建模真的很难
    阿里云4核8G服务器优惠价格表,最低价格501.90元6个月、983.80元1年
    python-web开发[16-18]之Django开发
    AndroidT(13) -- 根据 native appliction 的crash报告定位源码位置(一)
    linux驱动 usb转串口ch344 改变读取缓冲区大小
    如何实现LRU缓存淘汰算法?
    vscode配置linux私钥远程免密登录
    【Linux】System V 共享内存
    常见的中间件都在解决什么问题?
  • 原文地址:https://blog.csdn.net/Supermen333/article/details/127095223