1、首先需要了解BP神经网络是一种多层前馈网络。2、以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。
3、在matlab中命令行窗口中定义输入P,输出T,·通过“newff(minmax(P),[5,1]构建BP神经网络,“[net,tr]=train(net,P,T);”进行网络训练,“sim(net,P)”得到仿真预测值。
4、在命令行窗口按回车键之后,可以看到出现结果弹窗,最上面的Neural Network下面依次代表的是“输入、隐含层、输出层、输出”,隐含层中有5个神经元。
5、Progress下面的Epoch代表迭代次数,Gradient代表梯度,Vaildation Checks代表有效性检查,最后的绿色对勾代表性能目标达成。
6、最后将实际曲线和预测曲线绘制出来,可以看到使用BP神经网络预测的结果曲线基本和实际输出曲线一致。
谷歌人工智能写作项目:神经网络伪原创
1、首先需要了解BP神经网络是一种多层前馈网络。2、以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。
3、在matlab中命令行窗口中定义输入P,输出T,·通过“ne