有些面试会问“标记阶段:可达性分析算法” 与 “清除阶段:标记-清除算法”的区别,实际上,这俩不是同一个阶段的,没有可比性;也有问throw和throws的区别的,这种面试题很无聊,throw是生成异常的,而throws是处理异常(抛给别人处理),根本不是一回事;我面试的时候曾经遇到过final、finally、finalization的区别,同样无聊的面试题。
在堆里存放着几乎所有的Java对象实例,在GC执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象。只有被标记为己经死亡的对象,GC才会在执行垃圾回收时,释放掉其所占用的内存空间,因此这个过程我们可以称为垃圾标记阶段。
那么在JVM中究竟是如何标记一个死亡对象呢?简单来说,当一个对象已经不再被任何的存活对象继续引用时,就可以宣判为已经死亡。
判断对象存活一般有两种方式:引用计数算法和可达性分析算法。
引用计数算法(Reference Counting)比较简单,对每个对象保存一个整型的引用计数器属性。用于记录对象被引用的情况。
对于一个对象A,只要有任何一个对象引用了A,则A的引用计数器就加1;当引用失效时,引用计数器就减1。只要对象A的引用计数器的值为0,即表示对象A不可能再被使用,可进行回收。
优点:实现简单,垃圾对象便于辨识;判定效率高,回收没有延迟性。
缺点:
循环引用
小结:
引用计数算法,是很多语言的资源回收选择,例如因人工智能而更加火热的Python,它更是同时支持引用计数和垃圾收集机制。
具体哪种最优是要看场景的,业界有大规模实践中仅保留引用计数机制,以提高吞吐量的尝试。
Java并没有选择引用计数,是因为其存在一个基本的难题,也就是很难处理循环引用关系。
Python如何解决循环引用?
可达性分析算法,也称为根搜索算法或追踪性垃圾收集。
相对于引用计数算法而言,可达性分析算法不仅同样具备实现简单和执行高效等特点,更重要的是该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生。
相较于引用计数算法,这里的可达性分析就是Java、C#选择的。这种类型的垃圾收集通常也叫作追踪性垃圾收集(Tracing Garbage Collection)。
所谓“GC Roots”根集合就是一组必须活跃的引用。
基本思路:
在Java语言中,GC Roots包括以下几类元素:
虚拟机栈中引用的对象
本地方法栈内JNI(通常说的本地方法)引用的对象
方法区中类静态属性引用的对象
方法区中常量引用的对象
所有被同步锁synchronized持有的对象
Java虚拟机内部的引用。
反映java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。
除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。比如:分代收集和局部回收(Partial GC)。(局部回收就比如只考虑新生代的回收,那么老年代也会作为Root)
小技巧:
由于Root采用栈方式存放变量和指针,所以如果一个指针,它保存了堆内存里面的对象,但是自己又不存放在堆内存里面,那它就是一个Root。
(简单来说,堆周边的虚拟机等栈,大多数都是Root。)
注意:
如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行。这点不满足的话分析结果的准确性就无法保证。
这点也是导致GC进行时必须“Stop The World”的一个重要原因。
Java语言提供了对象终止(finalization)机制来允许开发人员提供对象被销毁之前的自定义处理逻辑。
当垃圾回收器发现没有引用指向一个对象,即:垃圾回收此对象之前,总会先调用这个对象的finalize()方法。
finalize() 方法允许在子类中被重写,用于在对象被回收时进行资源释放。通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件、套接字和数据库连接等
永远不要主动调用某个对象的finalize()方法,应该交给垃圾回收机制调用。理由包括下面三点:
从功能上来说,finalize()方法与C++中的析构函数比较相似,但是Java采用的是基于垃圾回收器的自动内存管理机制,所以finalize()方法在本质上不同于C++中的析构函数。
由于finalize()方法的存在,虚拟机中的对象一般处于三种可能的状态。
如果从所有的根节点都无法访问到某个对象,说明对象己经不再使用了。一般来说,此对象需要被回收。但事实上,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段。一个无法触及的对象有可能在某一个条件下“复活”自己(比如有钱),如果这样,那么对它的回收就是不合理的,为此,定义虚拟机中的对象可能的三种状态。如下:
以上3种状态中,是由于finalize()方法的存在,进行的区分。只有在对象不可触及时才可以被回收。(要救就只能救一次,复活了,下次还想刀下留人都救不了了,该死就得死,因为finalize()只能调用一次)
判定一个对象objA是否可回收,至少要经历两次标记过程:
1、如果对象objA到GC Roots没有引用链,则进行第一次标记。(第一次标记可能复活,也可能不可及,即死了)
2、进行筛选,判断此对象是否有必要执行finalize()方法
例子:
- package _03;
-
- /**
- * 测试Object类中finalize()方法,即对象的finalization机制。
- */
- public class _74_CanReliveObj {
- public static _74_CanReliveObj obj;//类变量,属于 GC Root
-
-
- // //此方法只能被调用一次
- // @Override
- // protected void finalize() throws Throwable {
- // super.finalize();
- // System.out.println("调用当前类重写的finalize()方法");
- // obj = this;//当前待回收的对象在finalize()方法中与引用链上的一个对象obj建立了联系
- // }
-
-
- public static void main(String[] args) {
- try {
- obj = new _74_CanReliveObj();
- // 对象第一次成功拯救自己
- obj = null;
- System.gc();//调用垃圾回收器
- System.out.println("第1次 gc");
- // 因为Finalizer线程优先级很低,暂停2秒,以等待它
- Thread.sleep(2000);
- if (obj == null) {
- System.out.println("obj is dead");
- } else {
- System.out.println("obj is still alive");
- }
- System.out.println("第2次 gc");
- // 下面这段代码与上面的完全相同,但是这次自救却失败了
- obj = null;
- System.gc();
- // 因为Finalizer线程优先级很低,暂停2秒,以等待它
- Thread.sleep(2000);
- if (obj == null) {
- System.out.println("obj is dead");
- } else {
- System.out.println("obj is still alive");
- }
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- }
运行(第一次GC就死了)
第1次 gc
obj is dead
第2次 gc
obj is dead
把上例子的finalize()方法注释打开
调用当前类重写的finalize()方法
第1次 gc
obj is still alive
第2次 gc
obj is dead
MAT是Memory Analyzer的简称,它是一款功能强大的Java堆内存分析器。用于查找内存泄漏以及查看内存消耗情况。
MAT是基于Eclipse开发的,是一款免费的性能分析工具。
可以在Eclipse Memory Analyzer Open Source Project | The Eclipse Foundation下载并使用MAT。
捕获的heap dump文件是一个临时文件,关闭JVisualVM后自动删除,若要保留,需要将其另存为文件。
可通过以下方法捕获heap dump:
本地应用程序的Heap dumps作为应用程序标签页的一个子标签页打开。同时,heap dump在左侧的Application(应用程序)栏中对应一个含有时间戳的节点。右击这个节点选择save as(另存为)即可将heap dump保存到本地。
生成的dump文件用MAT或者JProfiler查看
当成功区分出内存中存活对象和死亡对象后,GC接下来的任务就是执行垃圾回收,释放掉无用对象所占用的内存空间,以便有足够的可用内存空间为新对象分配内存。
目前在JVM中比较常见的三种垃圾收集算法:
背景:
标记 - 清除算法(Mark-Sweep)是一种非常基础和常见的垃圾收集算法,该算法被J.McCarthy等人在1960年提出并并应用于Lisp语言。
执行过程:
当堆中的有效内存空间(available memory)被耗尽的时候,就会停止整个程序(也被称为stop the world),然后进行两项工作,第一项则是标记,第二项则是清除。
这里所谓的清除并不是真的置空,而是把需要清除的对象地址保存在空闲的地址列表里。下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够,就存放。
为了解决标记-清除算法在垃圾收集效率方面的缺陷,M.L.Minsky于1963年发表了著名的论文,“使用双存储区的Lisp语言垃圾收集器CA LISP Garbage Collector Algorithm Using Serial Secondary Storage)”。M.L.Minsky在该论文中描述的算法被人们称为复制(Copying)算法,它也被M.L.Minsky本人成功地引入到了Lisp语言的一个实现版本中。
将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后清除正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收。
前面提到的S0、S1就是复制算法
region之间对象引用关系:
涉及前面提到的对象引用的方式:
如果系统中的非垃圾对象很多,复制算法不会很理想。因为复制算法需要复制的存活对象数量要少,效率才会高。
在新生代,对常规应用的垃圾回收,一次通常可以回收70% - 99% 的内存空间。回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。
在新生代,对常规应用的垃圾回收,一次通常可以回收70% - 99% 的内存空间(新生代的对象是朝生夕死的,与复制算法搭配特别完美)。回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。
复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生,但是在老年代,更常见的情况是大部分对象都是存活对象。如果依然使用复制算法,由于存活对象较多,复制的成本也将很高。因此,基于老年代垃圾回收的特性,需要使用其他的算法。
标记-清除算法的确可以应用在老年代中,但是该算法不仅执行效率低下,而且在执行完内存回收后还会产生内存碎片,所以JVM的设计者需要在此基础之上进行改进。标记-压缩(Mark-Compact)算法由此诞生。
1970年前后,G.L.Steele、C.J.Chene和D.S.Wise等研究者发布标记-压缩算法。在许多现代的垃圾收集器中,人们都使用了标记-压缩算法或其改进版本。
第一阶段和标记清除算法一样,从根节点开始标记所有被引用对象。
第二阶段将所有的存活对象压缩到内存的一端,按顺序排放。之后,清理边界外所有的空间。
标记-压缩算法的最终效果等同于标记-清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记-清除-压缩(Mark-Sweep-Compact)算法。
二者的本质差异在于标记-清除算法是一种非移动式的回收算法,标记-压缩是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策。
可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。
练习前面提到的:
指针碰撞(Bump the Pointer):
如果内存空间以规整的有序的方式分布,即已用和未用的内存都各自一边,彼此之间维系着一个记录下次分配起始点的标记指针,当为新对象分配内存时,只需要通过修改指针的偏移量将新对象分配在第一个空闲内存位置上,这种分配方式就叫做指针碰撞。
标记-清除 | 标记-整理 | 复制 | |
---|---|---|---|
速率 | 中等 | 最慢 | 最快 |
空间开销 | 少(但会堆积碎片) | 少(不堆积碎片) | 通常需要活对象的2倍空间(不堆积碎片) |
移动对象 | 否 | 是 | 是 |
效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存。(标记-清除有标记阶段、清除阶段)
而为了尽量兼顾上面提到的三个指标,标记-整理算法相对来说更平滑一些,但是效率上不尽如人意,它比复制算法多了一个标记的阶段,比标记-清除多了一个整理内存的阶段。
难道就没有一种最优算法吗?
回答:无,没有最好的算法,只有最合适的算法。
前面所有这些算法中,并没有一种算法可以完全替代其他算法,它们都具有自己独特的优势和特点。分代收集算法应运而生。
分代收集算法,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,以提高垃圾回收的效率。
在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。
目前几乎所有的GC都采用分代收集(Generational Collecting)算法执行垃圾回收的。
在HotSpot中,基于分代的概念,GC所使用的内存回收算法必须结合年轻代和老年代各自的特点。
年轻代(Young Gen)
老年代(Tenured Gen)
老年代特点:区域较大,对象生命周期长、存活率高,回收不及年轻代频繁。
这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记-清除或者是标记-清除与标记-整理的混合实现。
Mark阶段的开销与存活对象的数量成正比。(存活多,标记的时间开销就大)
Sweep阶段的开销与所管理区域的大小成正相关。
Compact阶段的开销与存活对象的数据成正比。(存活多,整理的时长就越长)
以HotSpot中的CMS回收器为例,CMS是基于Mark-Sweep实现的,对于对象的回收效率很高。而对于碎片问题,CMS采用基于Mark-Compact算法的Serial Old回收器作为补偿措施:当内存回收不佳(碎片导致的Concurrent Mode Failure时),将采用Serial Old执行Full GC以达到对老年代内存的整理。
分代的思想被现有的虚拟机广泛使用。几乎所有的垃圾回收器都区分新生代和老年代。
上述现有的算法,在垃圾回收过程中,应用软件将处于一种Stop the World的状态。在Stop the World状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集(Incremental Collecting)算法的诞生。
如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成。(比喻,打扫卫生每周打扫一次就会很快,一个月再打扫,就会很脏,打扫的时间就更长了。)
总的来说,增量收集算法的基础仍是传统的标记-清除和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作。
使用这种方式,由于在垃圾回收过程中,间断性地还执行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降。
一般来说,在相同条件下,堆空间越大,一次GC时所需要的时间就越长,有关GC产生的停顿也越长。为了更好地控制GC产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个堆空间,从而减少一次GC所产生的停顿。(主流垃圾器都是关注低延迟的;分区回收这个想法很好 。)
分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个堆空间划分成连续的不同小区间。 每一个小区间都独立使用,独立回收。这种算法的好处是可以控制一次回收多少个小区间。
下图的每个小块就是一个分区,是逻辑上的分区。一个小块就是一个region,每个region有的是Eden或SurvivorX或Old或Humongous。
注意:
这些只是基本的算法思路,实际GC实现过程要复杂的多,目前还在发展中的前沿GC都是复合算法,并且并行和并发兼备。