• 神经网络集成的缺点是,各种神经网络的优缺点


    神经网络优缺点,

    优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。

    预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。

    寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

    缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

    (3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。

    扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

    人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

    近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

    将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

    神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

    其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

    由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

    目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。

    谷歌人工智能写作项目:神经网络伪原创

    RBF神经网络的缺点!

    1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP网络的结构要比RBF 网络简单好文案

    2. RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。

    但是在训练样本增多时, RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。

    3. RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。

    4. 他们的结构是完全不一样的。BP是通过不断的调整神经元的权值来逼近最小误差的。其方法一般是梯度下降。

    RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的&#

  • 相关阅读:
    10 基于Dubbo 配置实战
    职责链设计模式
    《Mybatis 手撸专栏》第7章:SQL执行器的定义和实现
    【lwip】04-网络数据包流向
    人不成熟的特征
    使用原子子表创建可重用的子组件
    国际航运管理简答题-题库
    大整数运算(高精度运算)C/C++
    【Mysql】 blob 转text
    linux倒序查看占用cpu或内存最多的进程
  • 原文地址:https://blog.csdn.net/aifamao3/article/details/127094985