public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
static class Node<E> {
E item;
/**
* 下列三种情况之一
* - 真正的后继节点
* - 自己, 发生在出队时
* - null, 表示是没有后继节点, 是最后了
*/
Node<E> next;
Node(E x) { item = x; }
}
}
初始化链表 last = head = new Node(null); Dummy 节点用来占位,item 为 null.

当一个节点入队 last = last.next = node;

再来一个节点入队 last = last.next = node;

出队
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;




E x = first.item;
first.item = null;
return x;

用了两把锁和 dummy 节点
说明:
// 用于 put(阻塞) offer(非阻塞)
private final ReentrantLock putLock = new ReentrantLock();
// 用户 take(阻塞) poll(非阻塞)
private final ReentrantLock takeLock = new ReentrantLock();
put操作
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
// count 用来维护元素计数
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
// 满了等待
while (count.get() == capacity) {
// 倒过来读就好: 等待 notFull
notFull.await();
}
// 有空位, 入队且计数加一
enqueue(node);
c = count.getAndIncrement();
// 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
// 如果队列中有一个元素, 叫醒 take 线程
if (c == 0)
// 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争
signalNotEmpty();
}
take操作
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
// 如果队列中只有一个空位时, 叫醒 put 线程
// 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacity
if (c == capacity)
// 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争
signalNotFull()
return x;
}
由 put 唤醒 put 是为了避免信号不足
LinkedBlockingQueue 与 ArrayBlockingQueue 的性能比较:
ConcurrentLinkedQueue 的设计与 LinkedBlockingQueue类似:
不同点:
Tomcat 的 Connector 结构时,Acceptor 作为生产者向 Poller 消费者传递事件信息时,正是采用了 ConcurrentLinkedQueue 将 SocketChannel 给 Poller 使用.
案例
package cf..concurrent.thirdpart.test;
import java.util.Collection;
import java.util.Iterator;
import java.util.Queue;
import java.util.concurrent.atomic.AtomicReference;
public class Test3 {
public static void main(String[] args) {
MyQueue<String> queue = new MyQueue<>();
queue.offer("1");
queue.offer("2");
queue.offer("3");
System.out.println(queue);
}
}
class MyQueue<E> implements Queue<E> {
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (Node<E> p = head; p != null; p = p.next.get()) {
E item = p.item;
if (item != null) {
sb.append(item).append("->");
}
}
sb.append("null");
return sb.toString();
}
@Override
public int size() {
return 0;
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public boolean contains(Object o) {
return false;
}
@Override
public Iterator<E> iterator() {
return null;
}
@Override
public Object[] toArray() {
return new Object[0];
}
@Override
public <T> T[] toArray(T[] a) {
return null;
}
@Override
public boolean add(E e) {
return false;
}
@Override
public boolean remove(Object o) {
return false;
}
@Override
public boolean containsAll(Collection<?> c) {
return false;
}
@Override
public boolean addAll(Collection<? extends E> c) {
return false;
}
@Override
public boolean removeAll(Collection<?> c) {
return false;
}
@Override
public boolean retainAll(Collection<?> c) {
return false;
}
@Override
public void clear() {
}
@Override
public E remove() {
return null;
}
@Override
public E element() {
return null;
}
@Override
public E peek() {
return null;
}
public MyQueue() {
head = last = new Node<>(null, null);
}
private volatile Node<E> last;
private volatile Node<E> head;
private E dequeue() {
/*Node h = head;
Node first = h.next;
h.next = h;
head = first;
E x = first.item;
first.item = null;
return x;*/
return null;
}
@Override
public E poll() {
return null;
}
@Override
public boolean offer(E e) {
return true;
}
static class Node<E> {
volatile E item;
public Node(E item, Node<E> next) {
this.item = item;
this.next = new AtomicReference<>(next);
}
AtomicReference<Node<E>> next;
}
}
public boolean offer(E e) {
Node<E> n = new Node<>(e, null);
while(true) {
// 获取尾节点
AtomicReference<Node<E>> next = last.next;
// S1: 真正尾节点的 next 是 null, cas 从 null 到新节点
if(next.compareAndSet(null, n)) {
// 这时的 last 已经是倒数第二, next 不为空了, 其它线程的 cas 肯定失败
// S2: 更新 last 为倒数第一的节点
last = n;
return true;
}
}
}
CopyOnWriteArraySet 是它的马甲 底层实现采用了 写入时拷贝 的思想,增删改操作会将底层数组拷贝一份,更 改操作在新数组上执行,这时不影响其它线程的并发读,读写分离。
新增
public boolean add(E e) {
synchronized (lock) {
// 获取旧的数组
Object[] es = getArray();
int len = es.length;
// 拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)
es = Arrays.copyOf(es, len + 1);
// 添加新元素
es[len] = e;
// 替换旧的数组
setArray(es);
return true;
}
}
上面为Java11版本源码, Java8中是可重入锁.
读取
未加锁
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
for (Object x : getArray()) {
@SuppressWarnings("unchecked") E e = (E) x;
action.accept(e);
}
}
适合读多写少场景
存在问题

在线程0读取数组, 线程1读取数组, 然后线程1去删除数组元素,线程0任然可以读取数据.
迭代器弱一致性
CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
list.remove(0);
System.out.println(list);
}).start();
sleep1s();
while (iter.hasNext()) {
System.out.println(iter.next());
}
数据库的 MVCC 都是弱一致性的表现
并发高和一致性是矛盾的,需要权衡