一、极值点
- 极值的必要条件:f′(a)=0" role="presentation">f′(a)=0
- 极值的第一充分条件:f′(a)=0" role="presentation" style="position: relative;">f′(a)=0且f′(x)" role="presentation" style="position: relative;">f′(x)在x=a" role="presentation" style="position: relative;">x=a两侧变号
- 极值的第二充分条件:f′(a)=0" role="presentation" style="position: relative;">f′(a)=0且f″(a)≠0" role="presentation" style="position: relative;">f′′(a)≠0(f″(a)>0" role="presentation" style="position: relative;">f′′(a)>0为极小值,f″(a)<0" role="presentation" style="position: relative;">f′′(a)<0为极大值)
- 极值的第三充分条件:设f(x)" role="presentation" style="position: relative;">f(x)在x=a" role="presentation" style="position: relative;">x=a处最低阶不为零的导数的阶为n" role="presentation" style="position: relative;">n,若n" role="presentation" style="position: relative;">n为偶数x=a" role="presentation" style="position: relative;">x=a是极值点。若n" role="presentation" style="position: relative;">n为奇数x=a" role="presentation" style="position: relative;">x=a是不是极值点
二、拐点
函数的拐点可理解为导数的极值点,因此上述关于极值点的结论都可“稍加改变”后用于判断拐点,下面是一些常用结论:
- 拐点的必要条件:f″(a)=0" role="presentation" style="position: relative;">f′′(a)=0
- 拐点的充分条件:f″(a)=0" role="presentation" style="position: relative;">f′′(a)=0且f′(x)" role="presentation" style="position: relative;">f′(x)在x=a" role="presentation" style="position: relative;">x=a左右两侧变号
- 利用三阶导数的判别法:f′(a)=f″(a)=0" role="presentation" style="position: relative;">f′(a)=f′′(a)=0,f‴(a)≠0" role="presentation" style="position: relative;">f′′′(a)≠0
三、情形分析
情形一:,
- x=a" role="presentation" style="position: relative;">x=a既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点。例如一次函数f(x)=2x" role="presentation" style="position: relative;">f(x)=2x,有f′(0)=2" role="presentation" style="position: relative;">f′(0)=2,f″(0)=0" role="presentation" style="position: relative;">f′′(0)=0,但显然x=0" role="presentation" style="position: relative;">x=0既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点
- x=a" role="presentation" style="position: relative;">x=a是f(x)" role="presentation" style="position: relative;">f(x)的拐点,例如f(x)=x3+x" role="presentation" style="position: relative;">f(x)=x3+x,由于f′(0)=1" role="presentation" style="position: relative;">f′(0)=1,f″(0)=0" role="presentation" style="position: relative;">f′′(0)=0,f‴(0)=6" role="presentation" style="position: relative;">f′′′(0)=6,故x=0" role="presentation" style="position: relative;">x=0是f(x)" role="presentation" style="position: relative;">f(x)的拐点
情形二:,
- x=a" role="presentation" style="position: relative;">x=a是f(x)" role="presentation" style="position: relative;">f(x)的极值点,例如f(x)=x2" role="presentation" style="position: relative;">f(x)=x2,满足f′(0)=0" role="presentation" style="position: relative;">f′(0)=0,f″(0)=2" role="presentation" style="position: relative;">f′′(0)=2,显然x=0" role="presentation" style="position: relative;">x=0是f(x)" role="presentation" style="position: relative;">f(x)的极(小)值点
情形三:,
- x=a" role="presentation" style="position: relative;">x=a是f(x)" role="presentation" style="position: relative;">f(x)的极值点。例如f(x)=x4" role="presentation" style="position: relative;">f(x)=x4满足f′(0)=f″(0)=0" role="presentation" style="position: relative;">f′(0)=f′′(0)=0,显然x=0" role="presentation" style="position: relative;">x=0是f(x)" role="presentation" style="position: relative;">f(x)的极小值点
- x=a" role="presentation" style="position: relative;">x=a是f(x)" role="presentation" style="position: relative;">f(x)的拐点。例如f(x)=x3" role="presentation" style="position: relative;">f(x)=x3,满足f′(0)=f″(0)=0" role="presentation" style="position: relative;">f′(0)=f′′(0)=0,显然x=0" role="presentation" style="position: relative;">x=0是f(x)" role="presentation" style="position: relative;">f(x)的拐点
- x=a" role="presentation" style="position: relative;">x=a既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点。例如f(x)=C" role="presentation" style="position: relative;">f(x)=C(常值函数),显然任意点处一、二阶导数都等于0,但f(x)" role="presentation" style="position: relative;">f(x)既无极值点也无拐点
情形四:,
- 这是平凡的情形,显然x=a" role="presentation" style="position: relative;">x=a既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点。