设含有
n
n
n 个未知数
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn 的
n
n
n 个
n
n
n 元线性方程组成的方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
a
2
n
x
n
=
b
2
⋯
a
n
1
x
1
+
a
n
2
x
2
+
⋯
a
n
n
x
n
=
b
n
(3)
{a11x1+a12x2+⋯a1nxn=b1a21x1+a22x2+⋯a2nxn=b2⋯an1x1+an2x2+⋯annxn=bn \tag{3}
⎩
⎨
⎧a11x1+a12x2+⋯a1nxn=b1a21x1+a22x2+⋯a2nxn=b2⋯an1x1+an2x2+⋯annxn=bn(3)
它的解可以用
n
n
n 阶行列式表示,即有
克拉默法则 如果线性方程组
(
3
)
(3)
(3) 的系数矩阵
A
\boldsymbol{A}
A 的行列式不等于零,即
∣
A
∣
=
∣
a
11
⋯
a
1
n
⋮
⋮
a
n
1
⋯
a
n
n
∣
≠
0
|\boldsymbol{A}| = |a11⋯a1n⋮⋮an1⋯ann| \ne 0
∣A∣=
a11⋮an1⋯⋯a1n⋮ann
=0
那么,方程组
(
3
)
(3)
(3) 的有唯一解
x
1
=
∣
A
1
∣
∣
A
∣
,
x
2
=
∣
A
2
∣
∣
A
∣
,
⋯
,
x
n
=
∣
A
n
∣
∣
A
∣
x_1 = \frac{|\boldsymbol{A}_1|}{|\boldsymbol{A}|}, \hspace{1em} x_2 = \frac{|\boldsymbol{A}_2|}{|\boldsymbol{A}|}, \cdots, \hspace{1em} x_n = \frac{|\boldsymbol{A}_n|}{|\boldsymbol{A}|}
x1=∣A∣∣A1∣,x2=∣A∣∣A2∣,⋯,xn=∣A∣∣An∣
其中
A
j
(
j
=
1
,
2
,
⋯
,
n
)
\boldsymbol{A}_j \ (j=1,2,\cdots,n)
Aj (j=1,2,⋯,n) 是把系数矩阵
A
\boldsymbol{A}
A 中第
j
j
j 列的元素用方程组右端的常数项代替后所得的
n
n
n 阶矩阵,即
A
j
=
(
a
11
⋯
a
i
,
j
−
1
b
1
a
1
,
j
+
1
⋯
a
1
n
⋮
⋮
⋮
⋮
⋮
a
n
1
⋯
a
n
,
j
−
1
b
n
a
n
,
j
+
1
⋯
a
n
n
)
\boldsymbol{A}_j = (a11⋯ai,j−1b1a1,j+1⋯a1n⋮⋮⋮⋮⋮an1⋯an,j−1bnan,j+1⋯ann)
Aj=
a11⋮an1⋯⋯ai,j−1⋮an,j−1b1⋮bna1,j+1⋮an,j+1⋯⋯a1n⋮ann
证明 把方程组 ( 3 ) (3) (3) 写成矩阵方程
A x = b (3’) \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \tag{3'} Ax=b(3’)
因为 A = ( a i j ) n × n \boldsymbol{A} = (a_{ij})_{n \times n} A=(aij)n×n 为 n n n 阶矩阵,且有 ∣ A ∣ ≠ 0 |\boldsymbol{A}| \ne 0 ∣A∣=0,所以 A − 1 \boldsymbol{A}^{-1} A−1 存在。于是,令式 ( 3 ′ ) (3') (3′) 等式两边同被 A − 1 \boldsymbol{A}^{-1} A−1 左乘,有 A − 1 A x = A − 1 b \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b} A−1Ax=A−1b,即
x = A − 1 b (4) \boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b} \tag{4} x=A−1b(4)
根据逆矩阵的唯一性,可知 x = A − 1 b \boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b} x=A−1b 是方程组 ( 3 ) (3) (3) 的唯一的解向量。将 A − 1 = 1 ∣ A ∣ A ∗ \boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* A−1=∣A∣1A∗ 代入方程组的解向量式 ( 4 ) (4) (4),有
( x 1 x 2 ⋮ x n ) = 1 ∣ A ∣ ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) ( b 1 b 2 ⋮ b n ) = 1 ∣ A ∣ ( b 1 A 11 + b 2 A 21 + ⋯ b n A n 1 b 1 A 12 + b 2 A 22 + ⋯ b n A n 2 ⋮ b 1 A 1 n + b 2 A 2 n + ⋯ b n A n n ) (x1x2⋮xn) = \frac{1}{|\boldsymbol{A}|} (A11A21⋯An1A12A22⋯An2⋮⋮⋮A1nA2n⋯Ann) (b1b2⋮bn) = \frac{1}{|\boldsymbol{A}|} (b1A11+b2A21+⋯bnAn1b1A12+b2A22+⋯bnAn2⋮b1A1n+b2A2n+⋯bnAnn) x1x2⋮xn =∣A∣1 A11A12⋮A1nA21A22⋮A2n⋯⋯⋯An1An2⋮Ann b1b2⋮bn =∣A∣1 b1A11+b2A21+⋯bnAn1b1A12+b2A22+⋯bnAn2⋮b1A1n+b2A2n+⋯bnAnn 即
x j = 1 A ( b 1 A 1 j + b 2 A 2 j + ⋯ b n A n j ) (5) x_j = \frac{1}{\boldsymbol{A}} (b_1 A_{1j} + b_2 A_{2j} + \cdots b_n A_{nj}) \tag{5} xj=A1(b1A1j+b2A2j+⋯bnAnj)(5)
因为 “行列式等于它的仁一行(列)的各元素与其对应的代数余子式乘积之和“,所以上式 ( 5 ) (5) (5) 可以写成
x j = 1 A ∣ A j ∣ ( j = 1 , 2 , ⋯ , n ) x_j = \frac{1}{\boldsymbol{A}} |\boldsymbol{A}_j| \hspace{1em} (j=1,2,\cdots,n) xj=A1∣Aj∣(j=1,2,⋯,n)
得证。
克拉默法则解决的是方程个数与未知数个数相等并且系数行列式不等于零的线性方程组。