一、MOS管相关
大部分的教材都会告诉你长长的一段话:
MOS管全称金属氧化半导体场效应晶体管,英文名Metal-Oxide-Semiconductor Field-Effect Transistor,属于绝缘栅极场效晶体管,以硅片为秤体,利用扩散工艺制作.......有N沟道和P沟道两个型。不仅如此,它还有两个兄弟,分别是结型场效应管以及晶体场效应管.......
面对这么大一段话,我不知道你有没有搞明白MOS管,反正我大学里是完全没有搞明白,最后学了个寂寞。
本文丢开教科书这块裹脚布,从应用层面出发来给大家介绍一下MOS管里面最常见也是最容易使用的一种:增强型NMOS管,简称NMOS。当你熟悉了这个NMOS的使用之后呢,再回过头去看这个教材上的内容,我相信就会有不同的体会了。
NMOS的用法
首先来看这么一张简单的图,如下,我们可以用手去控制这个开关的开合,以此来控制这个灯光的亮灭。
那如果我们想要用Arduino或者单片机去控制这个灯泡的话呢,就需要使用MOS管来替换掉这个开关了。为了更加符合我们工程的实际使用习惯呢,我们需要把这张图稍微转换一下,就像如下图这样子。
那这两张图是完全等价的,我们可以看到MOS管是有三个端口,也就是有三个引脚,分别是gate,drain和source。只要记住他们分别简称g、d、s就可以,如下图。
我们把单片机的一个IO口接到这个MOS管的gate端口,就可以控制这个灯泡的亮灭了。当然别忘了供电。当这个单片机的IO口输出为高的时候,NMOS就等效为这个被闭合的开关,指示灯光就会被打开;那输出为低的时候呢,这个NMOS就等效为这个开关被松开了,那此时这个灯光就被关闭,是不很简单。
那如果我们不停的切换这个开关,那灯光就会闪烁。如果切换的这个速度再快一点,因为人眼的视觉暂留效应,灯光就不闪烁了。此时我们还能通过调节这个开关的时间来调光,这就是所谓的PWM波调光,以上就是MOS管最经典的用法,它实现了单片机的IO口控制一个功率器件。当然你完全可以把灯泡替换成其他的器件。器件比如说像水泵、电机、电磁铁这样的东西。
如何选择NMOS
明白了NMOS的用法之后呢,我们来看一下要如何选择一个合适的NMOS,也就是NMOS是如何选型的。
那对于一个初学者来说,有四个比较重要的参数需要来关注一下。第一个是封装,第二个是vgsth,第三个是Rdson上,第四个是Cgs。
封装比较简单,它指的就是一个MOS管这个外形和尺寸的种类也有很多。一般来说封装越大,它能承受的电流也就越大。为了搞明白另外三个参数呢,我们先要来介绍一下NMOS的等效模型,如下图。
MOS其实可以看成是一个由电压控制的电阻。这个电压指的是g、s两端的电压差,电阻指的是d、s之间的电阻。这个电阻的大小呢,它会随着g、s电压的变化而产生变化。当然它们不是线性对应的关系,实际的关系差不多像这样的,横坐标是g、s电压差。Rds与Vgs关系图,如下。
纵坐标是电阻的值,当g、s的电压小于一个特定值的时候呢,电阻基本上是无穷大的。然后这个电压值大于这个特定值的时候,电阻就接近于零,至于说等于这个值的时候会怎么样,我们先不用管这个临界的电压值,我们称之为vgsth,也就是打开MOS管需要的g、s电压,这是每一个MOS管的固有属性,我们可以在MOS管的数据手册里面找到它,如下。
显然vgsth一定要小于这个高电平的电压值,否则的话就没有办法被正常的打开。所以在你选择这个MOS管的时候,如果你的高电平是对应的5V,那么选3V左右的vgsth是比较合适的。太小的话会因为干扰而误触发,太大的话又打不开这个MOS管。
接下来我们再来看看NMOS的第二个重要参数Rdson,刚才有提到NMOS被完全打开的时候,它的电阻接近于零。但是无论多小,它总归是有一个电阻值的,这就是所谓的Rdson。它指的是NMOS被完全打开之后,d、s之间的电阻值。同样的你也可以在数据手册上找到它。这个电阻值当然是越小越好。越小的话呢,它分压分的少,而且发热也相对比较低。但实际情况一般Rdson越小,这个NMOS的价格就越高,而且一般对应的体积也会比较大。所以还是要量力而行,选择恰好合适。
最后说一下Cgs,这个是比较容易被忽视的一个参数,它指的是g跟s之间的寄生电容。所有的NMOS都有,这是一个制造工艺的问题,没有办法被避免。那它会影响到NMOS打开速度,因为加载到gate端的电压,首先要给这个电容先充电,这就导致了g、s的电压并不能一下子到达给定的一个数值。
它有一个爬升的过程。当然因为Cgs比较小,所以一般情况下我们感觉不到它的存在。但是当我们把这个时间刻度放大的时候,我们就可以发现这个上升的过程了。对于这个高速的PWM波控制场景是致命的。当PWM波的周期接近于这个爬升时间时,这个波形就会失真。一般来说Cgs大小和Rdson是成反比的关系。Rdson越小,Cgs就越大。所以大家要注意平衡他们之间的关系。
这里在将一下基础
1 三个极的判定
G极(gate)—栅极,不用说比较好认
S极(source)—源极,不论是P沟道还是N沟道,两根线相交的就是
D极(drain)—漏极,不论是P沟道还是N沟道,是单独引线的那边
2 N沟道与P沟道判别
箭头指向G极的是N沟道
箭头背向G极的是P沟道
3 寄生二极管方向判定
不论N沟道还是P沟道MOS管,中间衬底箭头方向和寄生二极管的箭头方向总是一致的: 要么都由S指向D,要么都有D指向S
4 MOS开关实现的功能
信号切换
电压通断
5 MOS管用作开关时在电路中的连接方法
关键点:
确定那一极连接输入端,那一极连接输出端
控制极电平为?V 时MOS管导通
控制极电平为?V 时MOS管截止
NMOS:
D极接输入,S极接输出。
PMOS:
S极接输入,D极接输出。
反证法加强理解
NMOS假如:
S接输入,D接输出。
由于寄生二极管直接导通,因此S极电压可以无条件到D极,MOS管就失去了开关的作用。
PMOS假如:
D接输入,S接输出。
同样失去了开关的作用。
6 MOS管的开关条件
N沟道
导通时,Ug> Us,Ugs> Ugs(th)时导通。
P沟道
导通时,Ug< Us,Ugs< Ugs(th)时导通。
总之,导通条件:|Ugs|>|Ugs(th)|
7 相关概念
BJT:
Bipolar Junction Transistor 双极性晶体管,BJT是电流控制器件。
FET:
Field Effect Transistor 场效应晶体管,FET是电压控制器件。
按结构场效应管分为:结型场效应(简称JFET)、绝缘栅场效应(简称MOSFET)。
两大类:
按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种。
按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
总的来说场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
8 MOS管重要参数
封装
类型(NMOS、PMOS)
耐压Vds(器件在断开状态下漏极和源极所能承受的最大的电压)
饱和电流Id
导通阻抗Rds
栅极阈值电压Vgs(th)
9 从MOS管实物识别管脚
无论是NMOS还是PMOS ,按上图方向摆正,中间的一脚为D,左边为G,右边为S。
或者这么记:单独的一脚为D,逆时针转DGS。
这里顺便提一下三极管的管脚识别:同样按照上图方向摆正,中间一脚为C,左边为B,右边为E。
管脚编号:
从G脚开始,逆时针123。
三极管的管脚编号同样从B脚开始,逆时针123。
10 用万用表辨别NNOS、PMOS
借助寄生二极管来辨别。将万用表档位拨至二极管档,红表笔接S,黑表笔接D,有数值显示,反过来接无数值,说明是N沟道,若情况相反是P沟道。
11 画一个MOS管
##然后又是MOS管的检测与代换
在修理电视机及电器设备时,会遇到各种元器件的损坏,MOS管也在其中,这就是我们的维修人员如何利用常用的万用表来判断MOS管的好坏、优劣。在更换MOS管是如果没有相同厂家及相同型号时,如何代换的问题。
MOS管的测试
作为一般的电器电视机维修人员在测量晶体三极管或二极管时,一般是采用普通的万用表来判断三极管或者二极管的好坏,虽然对所判断的三极管或二极管的电气参数没法确认,但是只要方法正确对于确认晶体三极管的“好”与“坏”还是没有问题的。同样MOS管也可以应用万用表来判断其“好”与“坏”,从一般的维修来说,也可以满足需求了。
检测必须采用指针式万用表(数字表是不适宜测量半导体器件的)。对于功率型MOSFET开关管都属N沟道增强型,各生产厂的产品也几乎都采用相同的TO-220F封装形式(指用于开关电源中功率为50—200W的场效应开关管),其三个电极排列也一致,即将三只引脚向下,打印型号面向自巳,左侧引脚为栅极,右测引脚为源极,中间引脚为漏极如图5-1所示。
图5-1
1)万用表及相关的准备:
首先在测量前应该会使用万用表,特别是欧姆档的应用,要了解欧姆挡才会正确应用欧姆挡来测量晶体三极管及MOS管(现在很多的从事修理人员,不会使用万用表,特别是万用表的欧姆挡,这绝不是危言耸听,问问他?他知道欧姆挡的R×1 R×10 R×100 R×1K R×10K,在表笔短路时,流过表笔的电流分别有多大吗?这个电流就是流过被测元件的电流。他知道欧姆挡在表笔开路时表笔两端的电压有多大吗?这就是在测量时被测元件在测量时所承受的电压)关于正确使用万用表欧姆挡的问题,可以参阅可以参阅“您会用万用表的欧姆挡测量二极管、三极管吗?”“可以参阅本博客“您会用万用表的欧姆挡测量二极管、三极管吗?”一文,因篇幅问题这里不再赘述。
用万用表的欧姆挡的欧姆中心刻度不能太大,最好小于12Ω(500型表为12Ω),这样在R×1挡可以有较大的电流,对于PN结的正向特性判断比较准确。万用表R×10K挡内部的电池最好大于9V,这样在测量PN结反相漏电流时比较准确,否则漏电也测不出来。
图5-2
现在由于生产工艺的进步,出厂的筛选、检测都很严格,我们一般判断只要判断MOS管不漏电、不击穿短路、内部不断路、能放大就可以了,方法极为简单:
采用万用表的R×10K挡;R×10K挡内部的电池一般是9V加1.5V达到10.5V这个电压一般判断PN结点反相漏电是够了,万用表的红表笔是负电位(接内部电池的负极),万用表的黑表笔是正电位(接内部电池的正极),图5-2所示。
2)测试步骤
把红表笔接到MOS管的源极S;把黑表笔接到MOS管的漏极D,此时表针指示应该为无穷大,如图5-3所示。如果有欧姆指数,说明被测管有漏电现象,此管不能用。
图5-3
保持上述状态;此时用一只100K~200K电阻连接于栅极和漏极,如图5-4所示;这时表针指示欧姆数应该越小越好,一般能指示到0欧姆,这时是正电荷通过100K电阻对MOS管的栅极充电,产生栅极电场,由于电场产生导致导电沟道致使漏极和源极导通,所以万用表指针偏转,偏转的角度大(欧姆指数小)证明放电性能好。
图5-4
此时在图5-4的状态;再把连接的电阻移开,这时万用表的指针仍然应该是MOS管导通的指数不变,如图5-5所示。虽然电阻拿开,但是因为电阻对栅极所充的电荷并没有消失,栅极电场继续维持,内部导电沟道仍然保持,这就是绝缘栅型MOS管的特点。如果电阻拿开表针会慢慢的逐步的退回到高阻甚至退回到无穷大,要考虑该被测管栅极漏电。
图5-5
这时用一根导线,连接被测管的栅极和源极,万用表的指针立即返回到无穷大,如图5-6所示。导线的连接使被测MOS管,栅极电荷释放,内部电场消失;导电沟道也消失,所以漏极和源极之间电阻又变成无穷大。
图5-6
MOS管的更换
在修理电视机及各种电器设备时,遇到元器件损坏应该采用相同型号的元件进行更换。但是,有时相同的元件手边没有,就要采用其他型号的进行代换,这样就要考虑到各方面的性能、参数、外形尺寸等,例如电视的里面的行输出管,只要考虑耐压、电流、功率一般是可以进行代换的(行输出管外观尺寸几乎相同),而且功率往往大一些更好。对于MOS管代换虽然也是这一原则,最好是原型号的最好,特别是不要追求功率要大一些,因为功率大;输入电容就大,换了后和激励电路就不匹配了,激励灌流电路的充电限流电阻的阻值的大小和MOS管的输入电容是有关系的,选用功率大的尽管容量大了,但输入电容也就大了,激励电路的配合就不好了,这反而会使MOS管的开、关性能变坏。所示代换不同型号的MOS管,要考虑到其输入电容这一参数。例如有一款42寸液晶电视的背光高压板损坏,经过检查是内部的大功率MOS管损坏,因为无原型号的代换,就选用了一个,电压、电流、功率均不小于原来的MOS管替换,结果是背光管出现连续的闪烁(启动困难),最后还是换上原来一样型号的才解决问题。
检测到MOS管损坏后,更换时其周边的灌流电路的元件也必须全部更换,因为该MOS管的损坏也可能是灌流电路元件的欠佳引起MOS管损坏。即便是MOS管本身原因损坏,在MOS管击穿的瞬间,灌流电路元件也受到伤害,也应该更换。就像我们有很多高明的维修师傅在修理A3开关电源时;只要发现开关管击穿,就也把前面的2SC3807激励管一起更换一样道理(尽管2SC3807管,用万用表测量是好的)。
二、灌电流与拉电流的区别介绍
当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。所以,灌电流有一个上限。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。拉电流越大,输出端的高电平就越低。这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。拉电流越大,输出端的高电平越低。
然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。所以,拉电流也有一个上限。
可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。所以,拉电流与灌电流反映了输出驱动能力。
芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。所以,往往低电平的灌电流不超标就不会有问题。用扇出系数来说明逻辑门来驱动同类门的能力,扇出系数No是低电平最大输出电流和低电平最大输入电流的比值。
在集成电路中, 吸电流、拉电流输出和灌电流输出是一个很重要的概念。
拉即泄,主动输出电流,是从输出口输出电流。
灌即充,被动输入电流,是从输出端口流入。
吸则是主动吸入电流,是从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流,区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。灌入电流是被动的,从输出端流入的叫灌入电流。
拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流,它们实际就是输入、输出电流能力。
吸收电流是对输入端(输入端吸入)而言的;而拉电流(输出端流出)和灌电流(输出端被灌入)是相对输出端而言的。
下图给出了一个直观解释:
图中PB0输出低电平上LED会亮,此时电流方向是流向PB0,也就是灌电流。
而PB1输出高电平下LED会亮,此时电流方向是从PB1流出,也就是拉电流。
whaosoft aiot http://143ai.com