• HDLbits exercises 7(Arithmetic Circuits节选题)


    目录

    1\ ADDR3

    2\ Exams/m2014 q4j

    3\ Exams/ece241 2014 q1c

    4\ Adder100

    5\ BCDADD4


    1\ ADDR3

    Now that you know how to build a full adder, make 3 instances of it to create a 3-bit binary ripple-carry adder. The adder adds two 3-bit numbers and a carry-in to produce a 3-bit sum and carry out. To encourage you to actually instantiate full adders, also output the carry-out from each full adder in the ripple-carry adder. cout[2] is the final carry-out from the last full adder, and is the carry-out you usually see.

    ERRO:

    module top_module( 
        input [2:0] a, b,
        input cin,
        output [2:0] cout,
        output [2:0] sum );

        assign {cout[0],sum[0]} = a+b+cin;
        assign {cout[1],sum[1]} = a+b+cout[0];
        assign {cout[2],sum[2]} = a+b+cout[1];

    endmodule

    CORRECT1:

    module top_module( 
        input [2:0] a, b,
        input cin,
        output [2:0] cout,
        output [2:0] sum );

        assign {cout[0],sum[0]} = a[0]+b[0]+cin;
        assign {cout[1],sum[1]} = a[1]+b[1]+cout[0];
        assign {cout[2],sum[2]} = a[2]+b[2]+cout[1];

    endmodule

    CORRECT2:

    module top_module( 
        input [2:0] a, b,
        input cin,
        output [2:0] cout,
        output [2:0] sum );
        genvar i;
        generate 
            for(i=0;i<3;i++)
                begin:aa
                    if(i==0)
                        begin
                            assign {cout[0],sum[0]}=a[0]+b[0]+cin;
                        end
                    else
                        begin
                            assign {cout[i],sum[i]}=a[i]+b[i]+cout[i-1];
                        end
                end
        endgenerate 

    endmodule

    2\ Exams/m2014 q4j

    Implement the following circuit:

     CORRECT1:

    module top_module (
        input [3:0] x,
        input [3:0] y, 
        output [4:0] sum);
        
        wire cout0,cout1,cout2,cout3;
      
        assign {cout0,sum[0]}=x[0]+y[0];
        assign {cout1,sum[1]}=x[1]+y[1]+cout0;
        assign {cout2,sum[2]}=x[2]+y[2]+cout1;
        assign {cout3,sum[3]}=x[3]+y[3]+cout2;
        assign sum[4]=cout3;

    endmodule

    CORRECT2:

    module top_module (
        input [3:0] x,
        input [3:0] y,
        output [4:0] sum
    );

        // This circuit is a 4-bit ripple-carry adder with carry-out.
        assign sum = x+y;    // Verilog addition automatically produces the carry-out bit.

        // Verilog quirk: Even though the value of (x+y) includes the carry-out, (x+y) is still considered to be a 4-bit number (The max width of the two operands).
        // This is correct:
        // assign sum = (x+y);
        // But this is incorrect:
        // assign sum = {x+y};    // Concatenation operator: This discards the carry-out
    endmodule

    3\ Exams/ece241 2014 q1c

    Assume that you have two 8-bit 2's complement numbers, a[7:0] and b[7:0]. These numbers are added to produce s[7:0]. Also compute whether a (signed) overflow has occurred.

    HINT:

    signed overflow occurs when adding two positive numbers produces a negative result, or adding two negative numbers produces a positive result. There are several methods to detect overflow: It could be computed by comparing the signs of the input and output numbers, or derived from the carry-out of bit n and n-1.

    CORRECT:

    module top_module (
        input [7:0] a,
        input [7:0] b,
        output [7:0] s,
        output overflow
    ); //
          assign s = a+b;
         assign overflow =(a[7]&b[7]&~s[7]) | ((~a[7])&(~b[7])&s[7]);

    endmodule

    ERRO:

    module top_module (
        input [7:0] a,
        input [7:0] b,
        output [7:0] s,
        output overflow
    ); //
         assign s = a+b;
         assign overflow =!(a^b);

    endmodule

    4\ Adder100

    Create a 100-bit binary adder. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out.

    HINT:

    There are too many full adders to instantiate, but behavioural code works well here. Also see the solution to Adder.

    CORRECT1:

    module top_module( 
        input [99:0] a, b,
        input cin,
        output cout,
        output [99:0] sum );
        genvar i;
        wire [99:0] ccout;
        generate 
            for(i=0;i<100;i++) begin:adder
                if(i==0)
                    assign {ccout[0],sum[0]}=cin+a[0]+b[0];
                else
                    assign {ccout[i],sum[i]}=ccout[i-1]+a[i]+b[i];
                        end
        endgenerate
        assign cout=ccout[99];

    endmodule

    CORRECT2:

    module top_module (
        input [99:0] a,
        input [99:0] b,
        input cin,
        output cout,
        output [99:0] sum
    );

        // The concatenation {cout, sum} is a 101-bit vector.
        assign {cout, sum} = a+b+cin;

    endmodule

    5\ BCDADD4

    You are provided with a BCD (binary-coded decimal) one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out.

    module bcd_fadd (
        input [3:0] a,
        input [3:0] b,
        input     cin,
        output   cout,
        output [3:0] sum );
    

    Instantiate 4 copies of bcd_fadd to create a 4-digit BCD ripple-carry adder. Your adder should add two 4-digit BCD numbers (packed into 16-bit vectors) and a carry-in to produce a 4-digit sum and carry out.

    HINT:

    • The BCD representation for the 5-digit decimal number 12345 is 20'h12345. This is not the same as 14'd12345 (which is 14'h3039).
    • The circuit is structured just like a binary ripple-carry adder, except the adders are base-10 rather than base-2.

    CORRECT:

    module top_module ( 
        input [15:0] a, b,
        input cin,
        output cout,
        output [15:0] sum );
        wire cout0,cout1,cout2;
        bcd_fadd inst1(a[3:0],b[3:0],cin,cout0,sum[3:0]);
        bcd_fadd inst2(a[7:4],b[7:4],cout0,cout1,sum[7:4]);
        bcd_fadd inst3(a[11:8],b[11:8],cout1,cout2,sum[11:8]);
        bcd_fadd inst4(a[15:12],b[15:12],cout2,cout,sum[15:12]);

    endmodule

  • 相关阅读:
    SpringBoot入门
    ChatGPT能给IOT行业带来哪些改变
    c++模板初阶
    使用qt 6.4 开发备忘录
    Angular tsconfig.json 文件里的 paths 用途
    基于springboot的医院门诊管理系统
    LeetCode(18)整数转罗马数字【数组/字符串】【中等】
    【C++】图的存储 -- 邻接表
    not in后面集合有null会导致主查询就查不到记录
    【广州华锐互动】VR消防队灭火实训:让消防安全教育变得更生动有趣!
  • 原文地址:https://blog.csdn.net/weixin_48304306/article/details/126896970