from torch import nn
import torch
classMobileNetV2(nn.Module):def__init__(self, num_classes=1000, alpha=1.0, round_nearest=8):super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = _make_divisible(32* alpha, round_nearest)
last_channel = _make_divisible(1280* alpha, round_nearest)
inverted_residual_setting =[# t, c, n, s[1,16,1,1],[6,24,2,2],[6,32,3,2],[6,64,4,2],[6,96,3,1],[6,160,3,2],[6,320,1,1],]
features =[]# conv1 layer
features.append(ConvBNReLU(3, input_channel, stride=2))# building inverted residual residual blockesfor t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * alpha, round_nearest)for i inrange(n):
stride = s if i ==0else1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, last_channel,1))# combine feature layers
self.features = nn.Sequential(*features)# building classifier
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(last_channel, num_classes))# weight initializationfor m in self.modules():ifisinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')if m.bias isnotNone:
nn.init.zeros_(m.bias)elifisinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)elifisinstance(m, nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.zeros_(m.bias)defforward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x,1)
x = self.classifier(x)return x
def_make_divisible(ch, divisor=8, min_ch=None):"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""if min_ch isNone:
min_ch = divisor
new_ch =max(min_ch,int(ch + divisor /2)// divisor * divisor)# Make sure that round down does not go down by more than 10%.if new_ch <0.9* ch:
new_ch += divisor
return new_ch
classConvBNReLU(nn.Sequential):def__init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):
padding =(kernel_size -1)//2super(ConvBNReLU, self).__init__(
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU6(inplace=True))classInvertedResidual(nn.Module):def__init__(self, in_channel, out_channel, stride, expand_ratio):super(InvertedResidual, self).__init__()
hidden_channel = in_channel * expand_ratio
self.use_shortcut = stride ==1and in_channel == out_channel
layers =[]if expand_ratio !=1:# 1x1 pointwise conv
layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=1))
layers.extend([# 3x3 depthwise conv
ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),# 1x1 pointwise conv(linear)
nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channel),])
self.conv = nn.Sequential(*layers)defforward(self, x):if self.use_shortcut:return x + self.conv(x)else:return self.conv(x)