• 神经网络国内外发展概况,人工神经网络发展趋势


    国内外人工神经网络的研究现状

    基于人工神经网络的土坝病害诊断知识获取方法摘要:以土坝测压管水位异常诊断为实例,对反向传播(BP)神经网络进行训练,然后通过典型示例经网络计算生成显式的诊断规则,为专家系统诊断推理时直接调用。

    该方法是土坝病害诊断知识获取的一种新方法,是对传统知识获取方式的拓展和补充。

    关键词:土坝;病害诊断;测压管异常;神经网络;知识获取我国目前已修建各种类型水库8.6万余座(是世界水库最多的国家之一),大中型水闸7.6万座,河道堤防20多万公里。

    这些水利工程和设施所发挥的巨大作用和效益大大促进了社会和经济的发展。

    然而从另一方面还应看到,在已建的水利工程中尚存许多不安全因素,由于修建当时的经济、技术条件限制以及其它一些因素的影响,使很多工程存在病害或隐患,另外,由于长期受各种自然或人为因素影响,加之年久失修,管理跟不上,老化现象也很严重,很大程度上影响了工程正常运行和效益的发挥,有些工程因此而失事。

    仅就土石坝而,历年累积溃坝率就高达3.4%。因此如何准确、及时地诊断出建筑物的隐患和病害,并对建筑物的安全性做出合理科学的评价意义十分重大。是当前水利工程管理中亟待解决的一项重要课题。

    水工建筑物的病害诊断是一项非常复杂的工作,需要有丰富经验的专家才能胜任。

    解决上述问题的一个好的办法是在做好监测的基础上,把专家经验、人工智能(AI)技术、计算机应用技术以及数值分析计算等有机结合起来,建造专家系统(Expert System简称:ES)。

    而专家系统开发中最关键的“瓶颈”问题就是知识获取,它既包括知识的体系结构、内容等难于获取,也包括推理规则中的推理参数(如可信度)难以确定等。

    笔者以土坝为研究对象开发了具有学习功能的土坝病害诊断专家系统ESLEDFDS[1,2],在系统开发中为解决知识获取问题,采取了传统的访谈(Interview)式的知识获取与从病害工程实例中抽取知识(事例学习)相结合的形式。

    实践证明该形式效果良好。论文将以土坝测压管水位异常诊断知识的获取为例,介绍一种基于人工神经网络事例学习的土坝病害诊断知识的获取方法。

    1 知识源分析及知识获取方法的选择土坝病害诊断的知识源主要有3个:(1)坝工诊断专家。大量的经验性知识存在于专家的大脑中,具有专有性和潜在性等特点。

    有时连专家本人也不容易系统地总结、归纳自己的知识,而且不易做出解释。这也就决定了它的难于获取,但它是ES知识的主要来源。(2)相关文献资料。文献资料作为一种信息载体,包含了大量理论和经验知识。

    其特点是量大、分散。而且,由于不同的文献来源于不同的著者,对同一问题的看法和分析结果可能有所差异,甚至相悖,所以有助于消除单个专家知识的片面性。

    但从大量分散的文献中抽取ES知识库所需的知识和方法,需经反复分析比较。(3)实例。

    一般情况下,专家头脑中知识的存储往往是片断的、非系统的,以访谈的形式,让专家叙述自己的知识时,一个个片断很难一下子系统地组织起来。

    而一旦真正面对实际问题(实例)坝工诊断专家却能够作很好的分析,说明这种刺激能使专家自觉或不自觉地去组织自己的知识。

    所以,同专家一同分析实例,可以了解专家的推理过程及所用知识,同时,经过专家分析的工程实例中蕴涵了专家的经验知识和推理判断,并且大多实例分析结果的正确与否已经得到实际验证。

    因此,实例是一种非常重要的知识源,可以通过一些模型、方法对实例进行学习,提炼出蕴涵在实例中的诊断知识。笔者在ESLEDFDS的知识获取中综合利用了以上3种知识源。

    通过走访专家、同专家一起分析文献资料,把诊断知识整理成一条条规则,存储于外部知识库中。此外,为补充专家经验知识的不足,还对收集的80余例土坝病害实例,应用人工神经元网络进行了事例学习和新规则生成。

    ......

    谷歌人工智能写作项目:神经网络伪原创

    神经网络研究现状

    光谱分析因其能够灵敏、高精度、无破坏、快速地检测物质的化学成分和相对含量而广泛应用于分析化学、生物化学与分子生物学、农业、医学等领域写作猫

    目前,光谱分析技术日趋成熟,引入光谱分析理论的高光谱遥感技术应用日益广泛,尤其是在农业领域,可以有效地获取农田信息、判断作物长势、估测作物产量、提取病害信息。

    光谱分析技术虽然具有很强的物质波谱“透视力”,但在分析 “同谱异物” 和 “异物同谱”等方面需要与现代分析手段相结合,如小波变换、卡尔曼滤波、人工神经网络(Artificial Neural Net-work,ANN)、遗传算法(Genetic Algorithm,GA)等。

    在光谱分析领域,ANN多用于物质生化组分的定量分析(陈振宁等,2001;印春生等,2000),在光度分析中也有较多应用,如,于洪梅等(2002)利用ANN分析铬和锆的混合吸收光谱,并结合分光度法对二者进行测定。

    ANN在非线性校准与光谱数据处理等方面也有应用(Blank,1993;方利民等;2008)。

    而在模式识别中ANN应用最为广泛,如,Eiceman et al.(2006)利用遗传算法(是ANN的一种)对混合小波系数进行分类识别。

    目前,自组织特征映射(Self-organizing Feature Maps,SOFM)神经网络在高光谱影像的模式识别方面,国内外还较少有研究与应用,而结合遥感波谱维光谱分析技术的应用研究就更少。

    SOFM常用于遥感图像处理方面,如,Moshou et al.(2005)利用SOFM神经网络进行数据融合,使分类误差减小到1%;Doucette et al.(2001)根据SOFM设计的SORM算法,从分类后的高分辨率影像中提取道路;Toivanen et al.(2003)利用SOFM神经网络从多光谱影像中提取边缘,并指出该方法可应用于大数据量影像边缘的提取;Moshou et al.(2006)根据5137个叶片的光谱数据,利用SOFM神经网络识别小麦早期黄锈病,准确率高达99%。

    然而,SOFM不需要输入模式期望值(在某些分类问题中,样本的先验类别是很难获取的),其区别于BP(Back Propagation)等其他神经网络模型最重要的特点是能够自动寻找样本的内在规律和本质属性,这大大地拓宽了SOFM在模式识别和分类方面的应用。

    基于以上几点,本章从光谱分析的角度对高光谱遥感影像进行分析识别和信息提取,给出了在不同光谱模型下,高光谱数据的不同分解,之后利用SOFM对具有较高光谱重叠度的这些分解进行分类识别,结合光谱分析对采样点进行类别辨识,并通过对小麦条锈病的病情严重度信息提取,提出了高光谱影像波谱维光谱分析的新途径。

    人工神经网络的发展趋势

    人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

    人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

    近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

    将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

    神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

    其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

    由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

    目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。下面主要就神经网络与小波分析、混沌、粗集理论、分形理论的融合进行分析。

    与小波分析的结合1981年,法国地质学家Morlet在寻求地质数据时,通过对Fourier变换与加窗Fourier变换的异同、特点及函数构造进行创造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。

    1986年以来由于YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速发展成为一门新兴学科。

    Meyer所著的小波与算子,Daubechies所著的小波十讲是小波研究领域最权威的著作。小波变换是对Fourier分析方法的突破。

    它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

    小波分析相当于一个数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。因此,小波分析已成为地球物理、信号处理、图像处理、理论物理等诸多领域的强有力工具。

    小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。

    在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。

    小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。

    小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。

    另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。混沌神经网络混沌第一个定义是上世纪70年代才被Li-Yorke第一次提出的。

    由于它具有广泛的应用价值,自它出现以来就受到各方面的普遍关注。

    混沌是一种确定的系统中出现的无规则的运动,混沌是存在于非线性系统中的一种较为普遍的现象,混沌运动具有遍历性、随机性等特点,能在一定的范围内按其自身规律不重复地遍历所有状态。

    混沌理论所决定的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。

    1990年Kaihara、T.Takabe和M.Toyoda等人根据生物神经元的混沌特性首次提出混沌神经网络模型,将混沌学引入神经网络中,使得人工神经网络具有混沌行为,更加接近实际的人脑神经网络,因而混沌神经网络被认为是可实现其真实世界计算的智能信息处理系统之一,成为神经网络的主要研究方向之一。

    与常规的离散型Hopfield神经网络相比较,混沌神经网络具有更丰富的非线性动力学特性,主要表现如下:在神经网络中引入混沌动力学行为;混沌神经网络的同步特性;混沌神经网络的吸引子。

    当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。

    混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程)一一联想到记忆模式,特别对于那些状态空间分布的较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善Hopfield神经网络的记忆能力。

    混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。这将对复杂的模式识别、图像处理等工程应用发挥重要作用。

    混沌神经网络受到关注的另一个原因是混沌存在于生物体真实神经元及神经网络中,并且起到一定的作用,动物学的电生理实验已证实了这一点。

    混沌神经网络由于其复杂的动力学特性,在动态联想记忆、系统优化、信息处理、人工智能等领域受到人们极大的关注。

    针对混沌神经网络具有联想记忆功能ÿ

  • 相关阅读:
    GBase 8a UNION用法
    《大数据之路:阿里巴巴大数据实践》-第4篇 数据应用篇 -第16章 数据应用
    民安智库(第三方市场调查公司)企业如何开展员工满意度调查
    服务器中毒怎么办?企业数据安全需重视
    shell统计每一行字符数的三种方法
    读取W25Q64的设备ID时输出0xff
    java毕业设计旧物置换网站(附源码、数据库)
    Python150题day19
    win10 环境下Python 3.8按装fastapi paddlepaddle 进行身份证及营业执照的识别2
    提升软件测试效率,是一种自我习惯
  • 原文地址:https://blog.csdn.net/Supermen333/article/details/126915839