DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同类型的值。DataFrame既有行索引也有列索引,它可以被看做是由Series组成的字典(共用同一个索引),数据是以二维结构存放的。
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
data:一组数据(ndarray、series, map, lists, dict 等类型)。
index:索引值,或者可以称为行标签。
columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
dtype:数据类型。
copy:拷贝数据,默认为 False。
1)通过单列表创建
>>> import pandas as pd >>> >>> data = [0, 1, 2, 3, 4, 5] >>> df = pd.DataFrame(data) >>> print(df) 0 0 0 1 1 2 2 3 3 4 4 5 5 >>> print(type(df))
2)通过嵌套列表创建
>>> import pandas as pd >>> >>> data = [['小明', 20], ['小红', 10]] >>> df = pd.DataFrame(data, columns=['name', 'age'], dtype=float) sys:1: FutureWarning: Could not cast to float64, falling back to object. This behavior is deprecated. In a future version, when a dtype is passed to 'DataFrame', either all columns will be cast to that dtype, or a TypeError will be raised >>> print(df) name age 0 小明 20.0 1 小红 10.0 >>> print(type(df))
3)列表中嵌套字典(字典的键被用作列名,缺失则赋值为NaN):
>>> import pandas as pd >>> >>> data = [{ 'A': 1, 'B': 2}, { 'A': 3, 'B': 4, 'C': 5}] >