给定一个序列X =

1、上图意味着,在求X=
2、我们很容易就看出其中的重叠子问题性质。我们都要求Xm-1和Yn-1的LCS(可以依据情况在后面进行追加或者是不追加)。
3、用c[i,j]表示Xi和Yj的LCS的长度。

LCS-LENGTH(X,Y)
m = X.length
n = Y.length
let b[1...m,1...n] and c[0...m,0...n] be new tables
for i = 1 to m
c[i,0] = 0
for j = 0 to n
c[0,j] = 0
for i = 1 to m
for j = 1 to n
if xi = yj
c[i,j] = c[i-1,j-1] + 1
b[i,j] = "↖"
elseif c[i-1,j]>=c[i,j-1]
c[i,j] = c[i-1,j]
b[i,j] = "↑"
else c[i,j]=c[i,j-1]
b[i,j] = "←"
return c and b

按照上图给出的箭头,我们就可以追踪到所有的元素。
PRINT-LCS(b,X,i,j)
if i==0 or j==0
return
if b[i,j]=="↖"
PRINT-LCS(b,X,i-1,j-1)
print xi
elseif b[i,j]=="↑"
PRINT-LCS(b,X,i-1,j)
else PRINT-LCS(b,X,i,j-1)
#include
#include
#define NUM 20
using namespace std;
int c[NUM][NUM];
char b[NUM][NUM];
void LCS_LENGTH(string X, string Y) {
int m = X.length();
int n = Y.length();
for (int i = 1; i <= m; i++) {
c[i][0] = 0;
}
for (int j = 0; j <= n; j++) {
c[0][j] = 0;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (X[i - 1] == Y[j - 1]) {
c[i][j] = c[i - 1][j - 1] + 1;
b[i][j] = 'a';
}
else if (c[i - 1][j] >= c[i][j - 1]) {
c[i][j] = c[i - 1][j];
b[i][j] = 'b';
}
else {
c[i][j] = c[i][j - 1];
b[i][j] = 'c';
}
}
}
}
void PRINT_LCS(string X, int m, int n)
{
if (m == 0 || n == 0)
return;
if (b[m][n] == 'a') {
PRINT_LCS(X, m - 1, n - 1);
cout << X[m - 1];
}
else if (b[m][n] == 'b') {
PRINT_LCS(X, m - 1, n);
}
else
PRINT_LCS(X, m, n - 1);
}
int main()
{
string X, Y;
cin >> X >> Y;
LCS_LENGTH(X, Y);
PRINT_LCS(X, X.length(), Y.length());
return 0;
}