• Matlab绘制面积堆叠图/面积图


    Matlab中,使用patch函数绘制面积堆叠图,也称为面积图。


    主要思路是:

    1. 加载Y数据
    2. 计算每个类别的上下限
    3. 使用patch函数进行绘制

    效果图如下:
    在这里插入图片描述


    代码如下(含数据):

    %%
    clc;
    clear;
    
    %%
    % 数据
    x = [
        1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,...
        1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,...
        1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,...
        1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,...
        1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,...
        2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,...
        2015,2016,2017,2018,2019,2020,2021
        ]';
    y1 = [
        379,126,360,667,311,185,371,170,275,338,473,294,365,...
        365,382,468,488,384,521,402,433,572,564,654,434,501,...
        291,715,711,366,790,659,476,540,750,505,741,1011,495,...
        432,483,1025,964,1047,1317,659,832,824,1367,370,273,...
        235,420,691,704,733,598,468,176,348,463,287,287,425,...
        552,514,617,250,388,514,712,380,250
        ]' / 100.0; % 用整数除以100表示小数
    y2 = [
        2006,1786,2471,2215,1812,1960,1907,2445,2221,2812,2534,...
        2601,2972,2626,3173,3303,3071,3200,3515,3583,2745,3630,...
        4212,3934,3311,3839,3287,3720,2546,4123,3668,3165,3373,...
        4120,3334,3903,4003,3570,3537,3315,3975,4464,3301,4662,...
        3491,4571,3367,4310,4878,3812,3041,3478,2547,2583,3479,...
        3361,3242,3229,2913,3409,3211,2879,2830,2634,3178,3312,...
        3706,2990,2670,3455,3728,2883,2343
        ]' / 100.0; % 用整数除以100表示小数
    y3 = [
        1521,1979,1419,1459,1278,1342,1569,1623,1437,1617,1472,...
        1654,1889,1534,1899,1812,1570,1927,2214,1836,1592,2105,...
        2616,2072,1736,1975,1776,1818,1347,1977,1665,1611,1561,...
        1240,1084,1975,1967,1544,1318,1313,2005,1680,1392,1745,...
        1447,1943,1489,1762,1624,1478,1694,1619,1622,1517,1690,...
        1666,1949,1367,1244,1624,1398,1300,1519,1688,1586,1519,...
        1738,1838,1472,1788,1541,1666,1186
        ]' / 100.0; % 用整数除以100表示小数
    y4 = [
        522,647,529,421,412,375,604,419,507,435,550,530,589,...
        596,575,555,682,654,802,734,603,803,918,755,506,593,...
        645,648,534,688,541,577,639,417,305,666,619,474,604,...
        638,556,615,483,675,426,693,623,611,703,458,617,640,...
        701,584,642,658,892,425,525,523,393,422,530,811,447,...
        656,611,684,677,934,638,703,640
        ]' / 100.0; % 用整数除以100表示小数
    y5 = [
        195,188,115,174,158,163,253,116,108,139,276,229,163,...
        313,278,161,287,290,277,213,175,173,198,265,102,228,...
        167,209,89,180,115,153,202,177,29,174,212,200,119,...
        124,217,172,187,230,178,171,180,301,377,169,133,257,...
        183,137,150,311,250,199,138,148,178,90,253,217,79,...
        167,272,114,132,261,223,261,192
        ]' / 100.0; % 用整数除以100表示小数
    
    %%
    figure(1);
    
    clrs = [
        0 0.4470 0.7410;
        0.8500 0.3250 0.0980;
        0.9290 0.6940 0.1250;
        0.4940 0.1840 0.5560;
        0.4660 0.6740 0.1880;
        0.3010 0.7450 0.9330;
        0.6350 0.0780 0.1840;
        ]; % 颜色
    
    gc = get(gca);
    set(gcf, 'position', [0, 50, 900, 600]);
    
    set(gca, 'FontName', 'Arial', 'FontSize', 24);
    xlabel('X', 'FontSize', 24, 'FontName', 'Arial');
    ylabel('Y', 'FontSize', 24, 'FontName', 'Arial');
    hold on;
    
    X = x;
    Y = [y1, y2, y3, y4, y5];
    Y1 = Y - Y;
    for i = 1 : size(Y, 2)
        for j = 1 : i
            Y1(:, i) = Y1(:, i) + Y(:, j);
        end
    end
    Y1 = [zeros(size(X)), Y1];
    
    sp = [];
    for i = 1 : size(Y1, 2) - 1
        spi = patch([X; flipud(X)], [Y1(:, i); flipud(Y1(:, i + 1))], clrs(i, :), 'FaceA', .85, 'EdgeA', 0);
        hold on;
        sp = [sp; spi];
    end
    
    h = legend(sp, {'Legend1', 'Legend2', 'Legend3', 'Legend4', 'Legend5'}, 'Location', 'northwest');
    set(h, 'FontName', 'Arial', 'FontSize', 22, 'FontWeight', 'normal');
    h.ItemTokenSize = [50, 40];
    hold on;
    legend('boxoff');
    
    xlim([min(X) max(X)]);
    ylim([min(Y1(:)) max(Y1(:)) * 1.25]);
    
    hold on;
    rr = axis;
    plot(rr(1 : 2), [rr(4), rr(4)], 'k-', [rr(2), rr(2)], rr(3 : 4), 'k-');
    
    set(gca, 'looseInset', [0.12, 0.03, 0.03, 0.08]);
    hold on;
    set(gca, 'xtick', 1950 : 10 : 2020);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
  • 相关阅读:
    深入解读:BIO、NIO与IO多路复用——理解现代网络编程基石
    Redis 只会用缓存?20种妙用让同事直呼牛X
    设计模式(二)| 结构型模式(适配器模式、代理模式等)
    【暑期每日一题】洛谷 P5740【深基7.例9】最厉害的学生
    外包干了10个月,技术退步明显.......
    8月SCI&SSCI期刊目录已更新,警惕这7本期刊
    江森自控×实在智能丨RPA一天完成20+人工作量,为制造业赋能
    足球资讯查询易语言代码
    通过 Chainlink Proof of Reserve 来验证质押资产
    多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测
  • 原文地址:https://blog.csdn.net/L_J_Kin/article/details/126897632