本文基于 SPARK 3.3.0
从一个unit test来探究SPARK Codegen的逻辑,
test("SortAggregate should be included in WholeStageCodegen") {
val df = spark.range(10).agg(max(col("id")), avg(col("id")))
withSQLConf("spark.sql.test.forceApplySortAggregate" -> "true") {
val plan = df.queryExecution.executedPlan
assert(plan.exists(p =>
p.isInstanceOf[WholeStageCodegenExec] &&
p.asInstanceOf[WholeStageCodegenExec].child.isInstanceOf[SortAggregateExec]))
assert(df.collect() === Array(Row(9, 4.5)))
}
}
该sql形成的执行计划第一部分的全代码生成部分如下:
WholeStageCodegen
± *(1) SortAggregate(key=[], functions=[partial_max(id#0L), partial_avg(id#0L)], output=[max#12L, sum#13, count#14L])
± *(1) Range (0, 10, step=1, splits=2)
第一阶段的代码生成涉及到SortAggregateExec和RangeExec的produce和consume方法,这里一一来分析:
第一阶段wholeStageCodegen数据流如下:
WholeStageCodegenExec SortAggregateExec(partial) RangeExec
=========================================================================
-> execute()
|
doExecute() ---------> inputRDDs() -----------------> inputRDDs()
|
doCodeGen()
|
+-----------------> produce()
|
doProduce()
|
doProduceWithoutKeys() -------> produce()
|
doProduce()
|
doConsume()<------------------- consume()
|
doConsumeWithoutKeys()
|并不是doConsumeWithoutKeys调用consume,而是由doProduceWithoutKeys调用
doConsume() <-------- consume()
override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
if (groupingExpressions.isEmpty) {
doConsumeWithoutKeys(ctx, input)
} else {
doConsumeWithKeys(ctx, input)
}
}
注意这里虽然把ExprCode类型变量row
传递进来了,但是在这个方法中却没有用到,因为对于大部分情况来说,该变量是对外部传递InteralRow的作用。
而input则是sortAgg_expr_0_0
,由rang_value_0
赋值而来.
doConsumeWithoutKeys对应的方法如下:
private def doConsumeWithoutKeys(ctx: CodegenContext, input: Seq[ExprCode]): String = {
// only have DeclarativeAggregate
val functions = aggregateExpressions.map(_.aggregateFunction.asInstanceOf[DeclarativeAggregate])
val inputAttrs = functions.flatMap(_.aggBufferAttributes) ++ inputAttributes
// To individually generate code for each aggregate function, an element in `updateExprs` holds
// all the expressions for the buffer of an aggregation function.
val updateExprs = aggregateExpressions.map { e =>
e.mode match {
case Partial | Complete =>
e.aggregateFunction.asInstanceOf[DeclarativeAggregate].updateExpressions
case PartialMerge | Final =>
e.aggregateFunction.asInstanceOf[DeclarativeAggregate].mergeExpressions
}
}
ctx.currentVars = bufVars.flatten ++ input
println(s"updateExprs: $updateExprs")
val boundUpdateExprs = updateExprs.map { updateExprsForOneFunc =>
bindReferences(updateExprsForOneFunc, inputAttrs)
}
val subExprs = ctx.subexpressionEliminationForWholeStageCodegen(boundUpdateExprs.flatten)
val effectiveCodes = ctx.evaluateSubExprEliminationState(subExprs.states.values)
val bufferEvals = boundUpdateExprs.map { boundUpdateExprsForOneFunc =>
ctx.withSubExprEliminationExprs(subExprs.states) {
boundUpdateExprsForOneFunc.map(_.genCode(ctx))
}
}
val aggNames = functions.map(_.prettyName)
val aggCodeBlocks = bufferEvals.zipWithIndex.map { case (bufferEvalsForOneFunc, i) =>
val bufVarsForOneFunc = bufVars(i)
// All the update code for aggregation buffers should be placed in the end
// of each aggregation function code.
println(s"bufVarsForOneFunc: $bufVarsForOneFunc")
val updates = bufferEvalsForOneFunc.zip(bufVarsForOneFunc).map { case (ev, bufVar) =>
s"""
|${bufVar.isNull} = ${ev.isNull};
|${bufVar.value} = ${ev.value};
""".stripMargin
}
code"""
|${ctx.registerComment(s"do aggregate for ${aggNames(i)}")}
|${ctx.registerComment("evaluate aggregate function")}
|${evaluateVariables(bufferEvalsForOneFunc)}
|${ctx.registerComment("update aggregation buffers")}
|${updates.mkString("\n").trim}
""".stripMargin
}
val codeToEvalAggFuncs = generateEvalCodeForAggFuncs(
ctx, input, inputAttrs, boundUpdateExprs, aggNames, aggCodeBlocks, subExprs)
s"""
|// do aggregate
|// common sub-expressions
|$effectiveCodes
|// evaluate aggregate functions and update aggregation buffers
|$codeToEvalAggFuncs
""".stripMargin
}
val functions =和val inputAttrs =
val inputAttrs = functions.flatMap(_.aggBufferAttributes) ++ inputAttributes
,对于AVG聚合函数来说,聚合的缓冲属性(aggBufferAttributes)为AttributeReference("sum", sumDataType)()
和AttributeReference("count", LongType)()
.
对于当前的计划来说,SortAggregateExec的inputAttributes
为AttributeReference("id", LongType, nullable = false)()
val updateExprs = aggregateExpressions.
对于目前的物理计划来说,当前的mode
为Partial
,所以该值为updateExpressions
,也就是局部更新,即
Add(
sum,
coalesce(child.cast(sumDataType), Literal.default(sumDataType)),
failOnError = useAnsiAdd),
/* count = */ If(child.isNull, count, count + 1L)
ctx.currentVars = bufVars.flatten ++ input
这里的bufVars
是在SortAggregateExec的produce方法进行赋值的,也就是对应“SUM”和“COUNT”初始值的ExprCode
这里的input
是名为sortAgg_expr_0_0
的ExprCode
变量
val boundUpdateExprs =
把当前的输入变量绑定到updataExprs
中去(很明显inputAttrs和currentVars是一一对应的)
val subExprs = 和val effectiveCodes =
进行公共子表达式的消除,并提前计算出在计算子表达式计算之前的自表达式。
对于当前的计划来说,该``effectiveCodes`为空字符串.
val bufferEvals =
产生进行update的ExprCode,这里具体为(这里分别为Add和IF表达式的codegen:
List(ExprCode(boolean sortAgg_isNull_7 = true;
double sortAgg_value_7 = -1.0;
if (!sortAgg_bufIsNull_1) {
sortAgg_sortAgg_isNull_9_0 = true;
double sortAgg_value_9 = -1.0;
do {
boolean sortAgg_isNull_10 = false;
double sortAgg_value_10 = -1.0;
if (!false) {
sortAgg_value_10 = (double) sortAgg_expr_0_0;
}
if (!sortAgg_isNull_10) {
sortAgg_sortAgg_isNull_9_0 = false;
sortAgg_value_9 = sortAgg_value_10;
continue;
}
if (!false) {
sortAgg_sortAgg_isNull_9_0 = false;
sortAgg_value_9 = 0.0D;
continue;
}
} while (false);
sortAgg_isNull_7 = false; // resultCode could change nullability.
sortAgg_value_7 = sortAgg_bufValue_1 + sortAgg_value_9;
},sortAgg_isNull_7,sortAgg_value_7),
ExprCode(boolean sortAgg_isNull_13 = false;
long sortAgg_value_13 = -1L;
if (!false && false) {
sortAgg_isNull_13 = sortAgg_bufIsNull_2;
sortAgg_value_13 = sortAgg_bufValue_2;
} else {
boolean sortAgg_isNull_17 = true;
long sortAgg_value_17 = -1L;
if (!sortAgg_bufIsNull_2) {
sortAgg_isNull_17 = false; // resultCode could change nullability.
sortAgg_value_17 = sortAgg_bufValue_2 + 1L;
}
sortAgg_isNull_13 = sortAgg_isNull_17;
sortAgg_value_13 = sortAgg_value_17;
},sortAgg_isNull_13,sortAgg_value_13))
val aggNames = functions.map(_.prettyName)
这里定义聚合函数的方法名字,最终会行成如下:sortAgg_doAggregate_avg_0
类似这种名字的方法。
val aggCodeBlocks =
这个是对应各个聚合函数的代码块,并在进行了聚合以后,把聚合的结果赋值给全局变量,对应的sql为:
sortAgg_bufIsNull_1 = sortAgg_isNull_7;
sortAgg_bufValue_1 = sortAgg_value_7;
sortAgg_bufIsNull_2 = sortAgg_isNull_13;
sortAgg_bufValue_2 = sortAgg_value_13;
其中sortAgg_bufValue_1
代表了SUM
,sortAgg_bufValue_2
代表COUNT
。
val codeToEvalAggFuncs = generateEvalCodeForAggFuncs
生成各个聚合函数的代码,如下:
sortAgg_doAggregate_max_0(sortAgg_expr_0_0);
sortAgg_doAggregate_avg_0(sortAgg_expr_0_0);
$effectiveCodes
组装代码