from matplotlib importpyplot as plt
importmatplotlib as mtb
#实现中文输出
mtb.rcParams['font.sans-serif']=["SimHei"]
mtb.rcParams["axes.unicode_minus"]= False
#设置大小 和 分辨率
plt.figure(figsize =(15,5), dpi =80)
#设置范围
x =['长津湖','战狼二','你好,李焕英','哪吒之魔童降世','流浪地球']
y =[4.108,2.147,3.024,2.321,2.608]
#设置折线
plt.barh(x , y , height =0.5, color ="#FF7F50")#plt.bar(x , y , width =0.5, color ="#4B0082")#barh横 bar 纵
#设置标签
plt.xlabel("票房(亿元)")
plt.ylabel("电影名称")
plt.title("内地票房前五名 上映次日票房比较")
#设置网格 alpha 是清晰度
plt.grid(alpha =0.3, color ="#000000")
#显示图像
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3.内地票房前五名 上映前三日票房比较(多次条形图)
from matplotlib importpyplot as plt
importmatplotlib as mtb
#实现中文输出
mtb.rcParams['font.sans-serif']=["SimHei"]
mtb.rcParams["axes.unicode_minus"]= False
#设置大小 和 分辨率
plt.figure(figsize =(15,5), dpi =80)
#设置范围
x =['长津湖','战狼二','你好,李焕英','哪吒之魔童降世','流浪地球']
y_1 =[2.05,1.02,2.91,1.44,1.91]
y_2 =[4.11,2.15,3.02,2.32,2.61]
y_3 =[4.39,3.13,4.56,2.89,3.42]
x_1 =list(range(len(x)))
x_2 =[i +0.3for i in x_1]
x_3 =[i +0.6for i in x_1]
#设置折线
plt.bar(x_1 , y_1 , width =0.3, color ="#FF7F50", label ="开映首日")
plt.bar(x_2 , y_2 , width =0.3, color ="#48D1CC", label ="开映次日")
plt.bar(x_3 , y_3 , width =0.3, color ="#00BFFF", label ="开映第三日")#plt.bar(x , y , width =0.5, color ="#4B0082")#barh横 bar 纵
plt.xticks(x_2 , x)
#设置标签
plt.xlabel("电影名称")
plt.ylabel("票房(亿元)")
plt.title("内地票房前五名 上映前三日票房比较")
#设置网格 alpha 是清晰度
plt.grid(alpha =0.3, color ="#000000")
plt.legend()
#显示图像
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4. 250部经典影片时长统计
from matplotlib importpyplot as plt
importmatplotlib as mtb
#实现中文输出
mtb.rcParams['font.sans-serif']=["SimHei"]
mtb.rcParams["axes.unicode_minus"]= False
#设置大小 和 分辨率
plt.figure(figsize =(15,5), dpi =80)
#设置范围
date =[139,98,125,131,124,139,131,117,128,108,135,138,131,102,107,114,119,128,121,142,127,130,124,101,110,116,117,110,128,128,115,99,136,126,134,95,138,117,111,78,132,124,113,150,110,117,86,95,144,105,126,130,126,130,126,116,123,106,112,138,123,86,101,99,136,123,117,119,105,137,123,128,125,104,109,134,125,127,105,120,107,129,116,108,132,103,136,118,102,120,114,105,115,132,145,119,121,112,139,125,138,109,132,134,156,106,117,127,144,139,139,119,140,83,110,102,123,107,143,115,136,118,139,123,112,118,125,109,119,133,112,114,122,109,106,123,116,131,127,115,118,112,135,115,146,137,116,103,144,83,123,111,110,111,100,154,136,100,118,119,133,134,106,129,126,110,111,109,141,120,117,106,149,122,122,110,118,127,121,114,125,126,114,140,103,130,141,117,106,114,121,114,133,137,92,121,112,146,97,137,105,98,117,112,81,97,139,113,134,106,144,110,137,137,111,104,117,100,111,101,110,105,129,137,112,120,113,133,112,83,94,146,133,101,131,116,111,84,137,115,122,106,144,109,123,116,111,111,133,150]
# [78,156] 取值范围
# 设置组距
d =5
#如何设置 hist 函数 和 坐标函数是 这个直方图的重点
# 用 极差 和 组距 求最大整除组数
num =(max(date)-min(date))// d
# 这里不一定能整除 , 比如质数 , 所以 bins 参数传一个列表进去
#列表范围[78,158] d =5 一定注意是 num +2
plt.hist(date ,[min(date)+ i * d for i in range(num +2)], color ="#FF7F50")
# 设置横坐标
plt.xticks(range(min(date),max(date)+2* d , d))
plt.yticks(range(1,40,2))
#设置标签
plt.xlabel("时长(min)")
plt.ylabel("数量")
plt.title("250部经典影片时长统计")
# 设置网格 alpha 是清晰度
plt.grid(alpha =0.3, color ="#000000")
#显示图像
plt.show()
#思考:如何变成频率分布直方图呢?
#1. plt.hist(date ,[min(date)+ i * d for i in range(num +2)], color ="#FF7F50") 中加上 density = True
#2. 去掉 plt.yticks(range(1,40,2)) 因为纵坐标要进行概率操作 ,再进行纵坐标设置就把之前的操作覆盖了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5.数组与数据类型
importnumpy as np
importrandom as rd
#numpy数组的创建 三种方法
ls =[rd.random()for i in range(1,10)]
a = np.array(range(1,10))
b = np.array(ls)
c = np.arange(1,10)print(a)print(b)print(c)
#用 dtype 规定数据类型
a = np.array(range(0,10), dtype ="int8")print(a)print(a.dtype)
#用 astype 转换数据类型
#这个函数有返回值 ,不改变本身数据类型
a1 = a.astype("bool")print(a1)print(a1.dtype)
# 保留 n 位小小数
c = b.round(2)print(c)#nannot a number 0/0#inf无穷大 x/0(x!=0)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
6.数组的大小 与 范围改变
importnumpy as np
t = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])print(t)#reshpe重新定义大小
t1 = t.reshape((16,))print(t1)
#不知道范围 , 转化为一维数组
t2 = t1.flatten()print(t2)