For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Each input file contains one test case which gives a positive integer N in the range (0,104).
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
6767
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
2222
2222 - 2222 = 0000
就是字符串和数字之间来回转换,直到相减为6174为止,思路还是很简单的,需要注意的是这些数字永远都是4位的。
测试点2,3,4都是因为忽略了数字永远都是4位的,降序排序的数字应该后补0,升序排序的数字应该前补0,直到数字为4位。
- #include
- using namespace std;
-
- map<int,int> turn_int(string a){
- map<int,int> r;int f=0,s=0;
- sort(a.begin(),a.end());
- for(int i = 0;i
size();i++){ - f=f*10+a[i]-'0';
- s=s*10+a[a.size()-1-i]-'0';
- }
- int times = a.size();
- while(times<4){// 当输入的字符串小于4位的时候,降序排序的那个数字需要后补0
- s*=10;
- times++;
- }
- r[f] = s;
- return r;
- }
-
- int main(){
- string N;
- cin>>N;
- int flag = 0;
- map<int,int> number;
- number = turn_int(N);
- auto i = number.begin();
-
- while(i->second - i->first != 6174){
- if(i->first == i->second) {
- printf("%04d - %04d = 0000\n",i->second,i->first);
- flag = 1;
- break;
- }
- printf("%04d - %04d = %04d\n",i->second,i->first,i->second-i->first);
- number = turn_int(to_string(i->second-i->first));
- i = number.begin();
- }
- if(flag == 0) printf("%04d - %04d = %04d\n",i->second,i->first,i->second-i->first);;
- return 0;
- }