看到这个问题有点小兴奋,我来推荐一份人工智能书单。
1、机器学习精讲机器学习原理算法与应用教程,精简机器学习入门手册,美亚机器学习深度学习畅销书,全彩印刷,扫描书中二维码可阅读补充内容,人工智能和机器学习领域众多知名专家推荐。
2、动手学深度学习目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。
本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。
为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。
这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。
3、深度学习本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。
同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等。
并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。
最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。
4、人工智能(第2版)本书是作者结合多年教学经验、精心撰写的一本人工智能教科书,堪称“人工智能的百科全书”。
全书涵盖了人工智能简史、搜索方法、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示、产生式系统、专家系统、机器学习和神经网络、遗传算法、自然语言处理、自动规划、机器人技术、高级计算机博弈、人工智能的历史和未来等主题。
5、Python神经网络编程本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。
您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书的目标是让尽可能多的普通读者理解神经网络。
读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。
谷歌人工智能写作项目:神经网络伪原创
写作猫。
《人工智能贲可荣第三版》百度网盘pdf最新全集下载:链接:?pwd=bl7d提取码:bl7d简介:人工智能是研究理解和模拟人类智能、智能行为及其规律的一门学科,其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。
本书介绍人工智能的理论、方法和技术及其应用,除了讨论那些仍然有用的和有效的基本原理和方法之外,着重阐述一些新的和正在研究的人工智能方法与技术,特别是近期发展起来的方法和技术。
此外,用比较多的篇幅论述人工智能的应用,包括新的应用研究。
贲可荣、张彦铎编著的《人工智能(第3版高等学校计算机教育规划教材)》包括下列内容:①简述人工智能的起源与发展,讨论人工智能的定义、人工智能与计算机的关系以及人工智能的研究和应用领域;②论述知识表示、推理和不确定推理的主要方法,包括谓词逻辑、产生式系统、语义网络、框架、知识图谱、归结推理、非单调推理、主观Bayes方法、确定性理论、证据理论、模糊逻辑和模糊推理等;③讨论常用搜索原理,如盲目搜索、启发式搜索、min-max搜索、α-β剪枝和约束满足等,并研究一些比较高级的搜索技术,如贪婪局部搜索、局部剪枝搜索、模拟退火算法、遗传算法等;④介绍分布式人工智能与Agent、计算智能、反向传播神经网络、深度学习、竞争网络支持向量化等已成为当前研究热点的人工智能技术和方法;⑤比较详细地分析人工智能的主要应用领域,涉及自动规划系统、自然语言处理、信息检索、语言翻译、语音识别、计算机视觉、群体智能机器人等。
本书适合作为高等学校计算机及相关专业大学高年级和非计算机专业研究生人工智能的教材,也可作为希望深入学习人工智能的科技人员的参考书。
大数据人工智能培训推荐选择【达内教育】。大数据人工智能需要学习的东西如下:1、数学基础。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。
这一模块覆盖了人工智能必备的数学基础知识,包括线性代数、概率论、最优化方法等。2、机器学习。机器学习的作用是从数据中习得学习算法,进而解决实际的应用问题,是【人工智能】的核心内容之一。
这一模块覆盖了机器学习中的主要方法,包括线性回归、决策树、支持向量机、聚类等。3、人工神经网络。
作为机器学习的一个分