网络协议是指通信双方就通信如何进行所必须共同遵守的约定和通信规则的集合,通俗的讲,就是双方约定好的通讯规则
网络协议的存在就是为了两者中间根据一定的协议通讯交流
在网络上通信的双方只有遵守相同的协议,才能正确地交流信息,典型的网络协议有:TCP/IP协议、IPX/SPX协议、IEEEE802标准协议系列、X.25协议等
TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议
其中TCP提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复用。通过面向连接、端到端和可靠的数据包发送。通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;
而UDP则不为IP提供可靠性、流控或差错恢复功能,一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。
传输控制协议(TCP):TCP(传输控制协议)定义了两台计算机之间进行可靠的传输而交换的数据和确认信息的格式,以及计算机为了确保数据的正确到达而采取的措施。协议规定了TCP软件怎样识别给定计算机上的多个目的进程如何对分组重复这类差错进行恢复。协议还规定了两台计算机如何初始化一个TCP数据流传输以及如何结束这一传输。TCP最大的特点就是提供的是面向连接、可靠的字节流服务
用户数据报协议(UDP):UDP(用户数据报协议)是一个简单的面向数据报的传输层协议。提供的是非面向连接的、不可靠的数据流传输。UDP不提供可靠性,也不提供报文到达确认、排序以及流量控制等功能,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。因此报文可能会丢失、重复以及乱序等。但由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快。
TCP传输控制协议 面向连接的 速度慢 传输具有可靠性
UDP用户数据报协议 无连接的 速度快 不可靠的
面向连接的TCP
“面向连接”就是在正式通信前必须要与对方建立起连接
TCP协议是一种可靠的、一对一的、面向有连接的通信协议,TCP主要通过下列几种方式保证数据传输的可靠性:
(1)在使用TCP协议进行数据传输时,往往需要客户端和服务端先建立一个“通道“、且这个通道只能够被客户端和服务端使用,所以TCP传输协议只能面向一对一的连接。
(2)为了保证数据传输的准确无误,TCP传输协议将用于传输的数据包分为若干个部分(每个部分的大小根据当时的网络情况而定),然后在它们的首部添加一个检验字节。当数据的一个部分被接收完毕之后,服务端会对这一部分的完整性和准确性进行校验,校验之后如果数据的完整度和准确度都为100%,在服务端会要求客户端开始数据下一个部分的传输,如果数据的完整性和准确性与原来不相符,那么服务端会要求客户端再次传输这个部分。 [5]
客户端与服务端在使用TCP传输协议时要先建立一个“通道”,在传输完毕之后又要关闭这“通道”,前者可以被形象地成为“三次握手”,而后者则可以被称为“四次挥手”
(1)在建立通道时,客户端首先要向服务端发送一个SYN同步信号。
(2)服务端在接收到这个信号之后会向客户端发出SYN同步信号和ACK确认信号。
(3)当服务端的ACK和SYN到达客户端后,客户端与服务端之间的这个“通道”就会被建立起来。
(1)在数据传输完毕之后,客户端会向服务端发出一个FIN终止信号。
(2)服务端在收到这个信号之后会向客户端发出一个ACK确认信号。
(3)如果服务端此后也没有数据发给客户端时服务端会向客户端发送一个FIN终止信号。
(4)客户端在收到这个信号之后会回复一个确认信号,在服务端接收到这个信号之后,服务端与客户端的通道也就关闭了。
TCP与UDP下socket差异对比
“无连接”就是在正式通信前不必与对方先建立连接,不管对方状态就直接发送
UDP传输协议是一种不可靠的、面向无连接、可以实现多对一、一对多和一对一连接的通信协议
(1)UDP在传输数据前既不需要建立通道,在数据传输完毕后也不需要将通道关闭,只要客户端给服务端发送一个请求,服务端就会一次性地把所有数据发送完毕
(2)UDP在传输数据时不会对数据的完整性进行验证,在数据丢失或数据出错时也不会要求重新传输,因此也节省了很多用于验证数据包的时间,所以以UDP建立的连接的延迟会比以TCP建立的连接的延迟更低
(3)UDP不会根据当前的网络情况来控制数据的发送速度,因此无论网络情况是好是坏,服务端都会以恒定的速率发送数据。虽然这样有时会造成数据的丢失与损坏,但是这一点对于一些实时应用来说是十分重要的
基于以上三点,UDP在数据传输方面速度更快,延迟更低,实时性更好,因此被广泛地用于通信领域和视频网站当中
UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境
计算机网络:有以IP协议为基础的TCP协议,以TCP协议为基础的HTTP协议,以TCP协议为基础的FTP协议等。这里HTTP和FTP是同一层次的两种不同协议。
高层:HTTP协议(超文本传输协议 请求响应协议)、FTP协议(文件传输协议)(应用层)
中层:TCP协议(传输控制协议)、UDP协议(用户数据报协议)(网络层)
底层1:IP协议(网际互联协议) (传输层)
底层和中层合在一起称为TCP/IP协议
互联网协议:
osi 7层协议
tcp/ip 5层协议
tcp/ip 7层协议
应用层 数据
表示层 数据
会话层 数据
传输层 TCP报头/UDP报头+数据 段
网络层 IP报头+ TCP报头/UDP报头+数据 包
数据链路层 帧头+IP报头+ TCP报头/UDP报头+数据 帧
物理层 转换为比特率 101010001 位bit
如果计算机之间想要通讯,就必须完成组网
物理层的功能:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0
数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思
数据链路层的功能:定义了电信号的分组方式
以太网协议:
早期的时候各个公司都有自己的分组方式,后来形成了统一的标准,即以太网协议ethernet
ethernet规定
•一组电信号构成一个数据包,叫做‘帧’
•每一数据帧分成:报头head和数据data两部分
head包含:(固定18个字节)
•发送者/源地址,6个字节
•接收者/目标地址,6个字节
•数据类型,6个字节
data包含:(最短46字节,最长1500字节)
•数据包的具体内容
head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送
mac地址:
head中包含的源和目标地址由来:ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址
mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)
广播:
有了mac地址,同一网络内的两台主机就可以通信了(一台主机通过arp协议获取另外一台主机的mac地址)
ethernet采用最原始的方式,广播的方式进行通信,即计算机通信基本靠吼
网络层由来:有了ethernet、mac地址、广播的发送方式,计算机就可以彼此通信了,问题是世界范围的互联网是由一个个彼此隔离的小的局域网组成的,那么如果所有的通信都采用以太网的广播方式,那么一台机器发送的包全世界都会收到,这就是个大问题了
上图结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,就采用路由的方式(向不同广播域/子网分发数据包)
网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址
IP协议:
•规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
•范围0.0.0.0-255.255.255.255
•一个ip地址通常写成四段十进制数,例:172.16.10.1
ip地址分成两部分
•网络部分:标识子网
•主机部分:标识主机
子网掩码
所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。
知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。
比如,已知IP地址172.16.10.1和172.16.10.2的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算
172.16.10.1:10101100.00010000.00001010.000000001
255255.255.255.0:11111111.11111111.11111111.00000000
AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
172.16.10.2:10101100.00010000.00001010.000000010
255255.255.255.0:11111111.11111111.11111111.00000000
AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
结果都是172.16.10.0,因此它们在同一个子网络
总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。
ip数据包
ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分
head:长度为20到60字节
data:最长为65,515字节。
而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。
ARP协议
arp协议由来:计算机通信基本靠广播的方式,所有上层的包到最后都要封装上以太网头,然后通过以太网协议发送,在谈及以太网协议时候,我门了解到通信是基于mac的广播方式实现,计算机在发包时,获取自身的mac是容易的,如何获取目标主机的mac,就需要通过arp协议
arp协议功能:广播的方式发送数据包,获取目标主机的mac地址
协议工作方式:每台主机ip都是已知的
例如:主机172.16.10.10/24访问172.16.10.11/24
一:首先通过ip地址和子网掩码区分出自己所处的子网
二:分析172.16.10.10/24与172.16.10.11/24处于同一网络(如果不是同一网络,那么下表中目标ip为172.16.10.1,通过arp获取的是网关的mac)
三:这个包会以广播的方式在发送端所处的自网内传输,所有主机接收后拆开包,发现目标ip为自己的,就响应,返回自己的mac
传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机,然后大家使用的都是应用程序,那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序,答案就是端口,端口即应用程序与网卡关联的编号
传输层功能:建立端口到端口的通信
补充:端口范围0-65535,0-1023为系统占用端口
tcp协议:
可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。
udp协议:
不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包
应用层由来:用户使用的都是应用程序,均工作于应用层,互联网是开发的,大家都可以开发自己的应用程序,数据多种多样,必须规定好数据的组织形式
应用层功能:规定应用程序的数据格式
例:TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”
两个进程如果需要进行通讯最基本的一个前提能能够唯一的标识一个进程
在本地进程通讯中我们可以使用PID来唯一标识一个进程,但PID只在本地唯一,网络中的两个进程PID冲突几率很大,不过IP层的ip地址可以唯一标示主机,而TCP层协议和端口号可以唯一标示主机的一个进程,这样我们可以利用ip地址+协议+端口号唯一标示网络中的一个进程
能够唯一标示网络中的进程后,它们就可以利用socket进行通信了
什么是socket呢?
我们经常把socket翻译为套接字,socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用已实现进程在网络中通信
总结:
想实现网络通信,每台主机需具备四要素
•本机的IP地址
•子网掩码
•网关的IP地址
•DNS的IP地址
获取这四要素分两种方式
1.静态获取
即手动配置
2.动态获取
通过dhcp获取
(1)最前面的”以太网标头”,设置发出方(本机)的MAC地址和接收方(DHCP服务器)的MAC地址。前者就是本机网卡的MAC地址,后者这时不知道,就填入一个广播地址:FF-FF-FF-FF-FF-FF。
(2)后面的”IP标头”,设置发出方的IP地址和接收方的IP地址。这时,对于这两者,本机都不知道。于是,发出方的IP地址就设为0.0.0.0,接收方的IP地址设为255.255.255.255。
(3)最后的”UDP标头”,设置发出方的端口和接收方的端口。这一部分是DHCP协议规定好的,发出方是68端口,接收方是67端口。
这个数据包构造完成后,就可以发出了。以太网是广播发送,同一个子网络的每台计算机都收到了这个包。因为接收方的MAC地址是FF-FF-FF-FF-FF-FF,看不出是发给谁的,所以每台收到这个包的计算机,还必须分析这个包的IP地址,才能确定是不是发给自己的。当看到发出方IP地址是0.0.0.0,接收方是255.255.255.255,于是DHCP服务器知道”这个包是发给我的”,而其他计算机就可以丢弃这个包。
接下来,DHCP服务器读出这个包的数据内容,分配好IP地址,发送回去一个”DHCP响应”数据包。这个响应包的结构也是类似的,以太网标头的MAC地址是双方的网卡地址,IP标头的IP地址是DHCP服务器的IP地址(发出方)和255.255.255.255(接收方),UDP标头的端口是67(发出方)和68(接收方),分配给请求端的IP地址和本网络的具体参数则包含在Data部分。
新加入的计算机收到这个响应包,于是就知道了自己的IP地址、子网掩码、网关地址、DNS服务器等等参数
(1)本机获取
•本机的IP地址:192.168.1.100
•子网掩码:255.255.255.0
•网关的IP地址:192.168.1.1
•DNS的IP地址:8.8.8.8
(2)打开浏览器,在地址栏输入了网址:比如www.google.com。
(3)dns协议(基于udp协议)
(4)HTTP部分的内容,类似于下面这样:
GET / HTTP/1.1
Host: www.google.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 6.1) ……
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: zh-CN,zh;q=0.8
Accept-Charset: GBK,utf-8;q=0.7,*;q=0.3
Cookie: … …
(5)TCP协议
TCP数据包需要设置端口,接收方(Google)的HTTP端口默认是80,发送方(本机)的端口是一个随机生成的1024-65535之间的整数,假定为51775。
TCP数据包的标头长度为20字节,加上嵌入HTTP的数据包,总长度变为4980字节。
(6)IP协议
然后,TCP数据包再嵌入IP数据包。IP数据包需要设置双方的IP地址,这是已知的,发送方是192.168.1.100(本机),接收方是172.194.72.105(Google)。
IP数据包的标头长度为20字节,加上嵌入的TCP数据包,总长度变为5000字节。
(7)以太网协议
最后,IP数据包嵌入以太网数据包。以太网数据包需要设置双方的MAC地址,发送方为本机的网卡MAC地址,接收方为网关192.168.1.1的MAC地址(通过ARP协议得到)。
以太网数据包的数据部分,最大长度为1500字节,而现在的IP数据包长度为5000字节。因此,IP数据包必须分割成四个包。因为每个包都有自己的IP标头(20字节),所以四个包的IP数据包的长度分别为1500、1500、1500、560。
(8)服务器端响应
经过多个网关的转发,Google的服务器172.194.72.105,收到了这四个以太网数据包。
根据IP标头的序号,Google将四个包拼起来,取出完整的TCP数据包,然后读出里面的”HTTP请求”,接着做出”HTTP响应”,再用TCP协议发回来
本机收到HTTP响应以后,就可以将网页显示出来,完成一次网络通信