1. 设 lim n → ∞ x n = + ∞ \underset{n \rightarrow \infty}{\lim}x_{n}=+\infty n→∞limxn=+∞,证明:
lim n → ∞ x 1 + x 2 + ⋯ + x n n = + ∞ . \lim_{n \rightarrow \infty}\frac{x_{1} +x_{2}+\cdots + x_{n}}{n} = +\infty. n→∞limnx1+x2+⋯+xn=+∞.
证 1: { x n } \{x_{n}\} {xn} 是正无穷大量,则对于任意给定的 G > 0 G>0 G>0,存在某个正整数 N 1 N_{1} N1,使得当 n > N 1 n>N_{1} n>N1 时,成立 x n > 2 G x_{n}>2G xn>2G.
分析可知,当 n n n 充分大时(不妨假设 n > N 1 n>N_{1} n>N1 时就已经满足),有
x 1 + x 2 + ⋯ + x n n > 0 ⟺ ∣ x 1 + x 2 + ⋯ + x n n ∣ = x 1 + x 2 + ⋯ + x n n . \frac{x_{1}+x_{2} +\cdots + x_{n}}{n}>0 \Longleftrightarrow \left|\frac{x_{1}+x_{2} +\cdots + x_{n}}{n}\right| = \frac{x_{1}+x_{2} +\cdots + x_{n}}{n}. nx1+x2+⋯+xn>0⟺∣ ∣nx1+x2+⋯+xn∣ ∣=nx1+x2+⋯+xn.
由三角不等式可得
x
1
+
x
2
+
⋯
+
x
n
n
=
∣
x
1
+
x
2
+
⋯
+
x
n
n
∣
=
∣
(
x
N
1
+
1
+
x
N
1
+
2
+
⋯
+
x
n
n
)
−
(
−
x
1
+
x
2
+
⋯
+
x
N
1
n
)
∣
≥
∣
x
N
1
+
1
+
x
N
1
+
2
+
⋯
+
x
n
n
∣
−
∣
x
1
+
x
2
+
⋯
+
x
N
1
n
∣
>
n
−
N
1
n
⋅
(
2
G
)
−
M
n
.
其中, M = ∣ x 1 + x 2 + ⋯ + x N 1 ∣ M=|x_{1}+x_{2}+\cdots + x_{N_{1}}| M=∣x1+x2+⋯+xN1∣ 为一实数。
取 N 2 = max { 4 N 1 , 2 M G } N_{2} = \max \{4N_{1},\frac{2M}{G}\} N2=max{4N1,G2M},则当 n > N 2 n>N_{2} n>N2 时,成立
x 1 + x 2 + ⋯ + x n n > G . \frac{x_{1}+x_{2} +\cdots + x_{n}}{n} >G. nx1+x2+⋯+xn>G.
得证。
证毕
证 2:与 证 1 基本相同,不同之处在于使用三角不等式时,利用了一种“折半”的思想:
x
1
+
x
2
+
⋯
+
x
n
n
=
∣
x
1
+
x
2
+
⋯
+
x
n
n
∣
=
∣
(
x
N
1
+
1
+
x
N
1
+
2
+
⋯
+
x
n
n
)
−
(
−
x
1
+
x
2
+
⋯
+
x
N
1
n
)
∣
≥
∣
x
N
1
+
1
+
x
N
1
+
2
+
⋯
+
x
n
n
∣
−
∣
x
1
+
x
2
+
⋯
+
x
N
1
n
∣
>
1
2
⋅
(
3
G
)
−
1
2
⋅
G
=
G
.
证毕
2. 设 { x n } \{x_{n}\} {xn} 单调增加, lim n → ∞ x 1 + x 2 + ⋯ + x n n = a \underset{n \rightarrow \infty}{\lim}\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=a n→∞limnx1+x2+⋯+xn=a,证明: { x n } \{x_{n}\} {xn} 收敛于 a a a.
证:分析可知,对于单调增加的数列而言,若有界,则由 单调有界数列收敛定理 ,数列收敛;若无界,则发散至正无穷。对于
{
x
n
}
\{x_{n}\}
{xn} 而言,若有界,则收敛,不妨设
lim n → ∞ x n = b . \lim_{n \rightarrow \infty}x_{n} = b. n→∞limxn=b.
则由 Cauchy 命题 可知,
a
=
b
a = b
a=b.
若 { x n } \{x_{n}\} {xn} 无界,则
lim n → ∞ x n = + ∞ . \lim_{n \rightarrow \infty}x_{n} = +\infty. n→∞limxn=+∞.
同样由 Cauchy 命题 可知,
a
=
+
∞
a = +\infty
a=+∞.
综上,问题得证。
证毕
3. 设 { a 2 k − 1 } \{a_{2k-1}\} {a2k−1} 收敛于 a a a, { a 2 k } \{a_{2k}\} {a2k} 收敛于 b b b,且 a ≠ b a \ne b a=b,求
lim n → ∞ a 1 + a 2 + ⋯ + a n n . \lim_{n \rightarrow \infty}\frac{a_{1} +a_{2}+\cdots + a_{n}}{n}. n→∞limna1+a2+⋯+an.
解:先考虑数列 { x n } \{x_{n}\} {xn},其中
x n = a 1 + a 2 + ⋯ + a n n . x_{n} = \frac{a_{1} +a_{2}+\cdots + a_{n}}{n}. xn=na1+a2+⋯+an.
于是,对于 { x n } \{x_{n}\} {xn} 的奇数列 { x 2 k − 1 } \{x_{2k-1}\} {x2k−1} 与 偶数列 { x 2 k } \{x_{2k}\} {x2k} 而言,
x 2 k − 1 = a 1 + a 2 + ⋯ + a 2 k − 1 2 k − 1 , x 2 k = a 1 + a 2 + ⋯ + a 2 k 2 k . x_{2k-1} = \frac{a_{1} + a_{2} + \cdots + a_{2k-1}}{2k-1},\quad x_{2k} = \frac{a_{1}+a_{2}+\cdots+a_{2k}}{2k}. x2k−1=2k−1a1+a2+⋯+a2k−1,x2k=2ka1+a2+⋯+a2k.
显然,
x
2
k
−
1
=
a
1
+
a
3
+
⋯
+
a
2
k
−
1
k
⋅
k
2
k
−
1
+
a
2
+
a
4
+
⋯
+
a
2
k
−
2
k
−
1
⋅
k
−
1
2
k
−
1
,
x
2
k
=
a
1
+
a
3
+
⋯
+
a
2
k
−
1
k
⋅
k
2
k
+
a
2
+
a
4
+
⋯
+
a
2
k
k
⋅
k
2
k
.
由 Cauchy 命题,
lim k → ∞ x 2 k − 1 = a + b 2 , lim k → ∞ x 2 k = a + b 2 . \lim_{k \rightarrow \infty}x_{2k-1} = \frac{a+b}{2},\quad \lim_{k \rightarrow \infty}x_{2k} = \frac{a+b}{2}. k→∞limx2k−1=2a+b,k→∞limx2k=2a+b.
因此 { x n } \{x_{n}\} {xn} 收敛,且
lim n → ∞ x n = a + b 2 , \lim_{n \rightarrow \infty}x_{n} = \frac{a+b}{2}, n→∞limxn=2a+b,
证毕
附注:题3 说明了 Cauchy 命题 的逆命题不成立。
4. 若 lim n → ∞ ( a n − a n − 1 ) = d \underset{n \rightarrow \infty}{\lim}(a_{n}-a_{n-1})=d n→∞lim(an−an−1)=d,证明: lim n → ∞ a n n = d \underset{n \rightarrow \infty}{\lim}{\frac{a_{n}}{n}}=d n→∞limnan=d.
证 1:直接使用 Stolz 定理,得证。
证毕
证 2:构造数列 { x n } \{x_{n}\} {xn},其中
x
n
=
{
a
1
n
=
1
,
a
n
−
a
n
−
1
n
>
2.
x_{n} =
则
lim n → ∞ x n = d . \lim_{n \rightarrow \infty}x_{n} = d. n→∞limxn=d.
由 Cauchy 命题,
lim n → ∞ a n n = lim n → x 1 + x 2 + ⋯ + x n n = d . \lim_{n \rightarrow \infty}\frac{a_{n}}{n} = \lim_{n \rightarrow}\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} = d. n→∞limnan=n→limnx1+x2+⋯+xn=d.
证毕
附注:题 4 也被说为 Cauchy 命题 的另一形式。
5. 设 { a n } \{a_{n}\} {an} 为正数列,且收敛于 A A A,证明:
lim n → ∞ ( a 1 a 2 ⋯ a n ) 1 n = A . \lim_{n \rightarrow \infty}\left(a_{1}a_{2}\cdots a_{n}\right)^{\frac{1}{n}} = A. n→∞lim(a1a2⋯an)n1=A.
证:由题意得
lim n → ∞ x n = A . \lim_{n \rightarrow \infty}x_{n} = A. n→∞limxn=A.
由于 { x n } \{x_{n}\} {xn} 为正数列,因此 A ≥ 0 A \ge 0 A≥0.
(1)若
A
=
0
A=0
A=0,则由 Cauchy 命题 可得
lim n → ∞ x 1 + x 2 + ⋯ + x n n = 0. \lim_{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots +x_{n}}{n} = 0. n→∞limnx1+x2+⋯+xn=0.
由 算术-几何平均值不等式 可得
0 < ( x 1 x 2 ⋯ x n ) 1 n < x 1 + x 2 + ⋯ + x n n . 0< \left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}}< \frac{x_{1}+x_{2}+\cdots +x_{n}}{n} . 0<(x1x2⋯xn)n1<nx1+x2+⋯+xn.
由数列极限的夹逼性可得
lim n → ( x 1 x 2 ⋯ x n ) 1 n = A = 0. \lim_{n \rightarrow}\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} = A=0. n→lim(x1x2⋯xn)n1=A=0.
(2)若 A ≠ 0 A \ne 0 A=0,则有
lim n → ∞ 1 x n = 1 A . \lim_{n \rightarrow \infty}\frac{1}{x_{n}} = \frac{1}{A}. n→∞limxn1=A1.
由 Cauchy 命题 可得
lim n → ∞ 1 x n + 1 x 2 + ⋯ + 1 x n n = 1 A . \lim_{n \rightarrow \infty}\frac{\frac{1}{x_{n}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}}{n} = \frac{1}{A}. n→∞limnxn1+x21+⋯+xn1=A1.
再由 算术-几何平均值不等式
n 1 x n + 1 x 2 + ⋯ + 1 x n ≤ ( x 1 x 2 ⋯ x n ) 1 n ≤ x 1 + x 2 + ⋯ + x n n . \frac{n}{\frac{1}{x_{n}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} \le \left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} \le \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}. xn1+x21+⋯+xn1n≤(x1x2⋯xn)n1≤nx1+x2+⋯+xn.
由数列极限的夹逼性,则
lim n → ( x 1 x 2 ⋯ x n ) 1 n = A . \lim_{n \rightarrow}\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} = A. n→lim(x1x2⋯xn)n1=A.
证毕
6. 设 { a n } \{a_{n}\} {an} 为正数列,且存在极限 lim n → ∞ a n + 1 a n = l \underset{n \rightarrow \infty}{\lim}\frac{a_{n+1}}{a_{n}} = l n→∞limanan+1=l,证明: lim n → ∞ a n n = l \underset{n \rightarrow \infty}{\lim}\sqrt[n]{a_{n}}=l n→∞limnan=l.
证:构造一个数列 { y n } \{y_{n}\} {yn},其中
x
n
=
{
a
1
n
=
1
,
a
n
a
n
−
1
n
≥
2.
x_{n} =
则
lim n → ∞ x n = l . \lim_{n \rightarrow \infty}x_{n} = l. n→∞limxn=l.
由 题5 结论,
lim n → ∞ a n n = lim n → ∞ ( x 1 x 2 ⋯ x n ) 1 n = l . \lim_{n \rightarrow \infty}\sqrt[n]{a_{n}} = \lim_{n \rightarrow \infty}\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} = l. n→∞limnan=n→∞lim(x1x2⋯xn)n1=l.
证毕
7. 设 lim n ⇝ ∞ ( x n − x n − 2 ) = 0 \underset{n \rightsquigarrow \infty}{\lim}(x_{n}-x_{n-2})=0 n⇝∞lim(xn−xn−2)=0,证明:
lim n → ∞ x n n = 0. \lim_{n \rightarrow \infty}\frac{x_{n}}{n} = 0. n→∞limnxn=0.
证:构造数列 { y n } \{y_{n}\} {yn},其中
y
n
=
{
x
1
n
=
1
,
x
2
n
=
2
,
x
n
−
x
n
−
2
n
>
2.
y_{n} =
于是
lim n → ∞ y n = 0. \lim_{n \rightarrow \infty}y_{n} = 0. n→∞limyn=0.
考虑 { y n } \{y_{n}\} {yn} 的奇数子列 { y 2 k − 1 } \{y_{2k-1}\} {y2k−1} 与偶数子列 { y 2 k } \{y_{2k}\} {y2k},有
lim
k
→
∞
y
2
k
−
1
=
lim
k
→
∞
(
x
2
k
−
1
−
x
2
k
−
3
)
=
0
,
lim
k
→
∞
y
2
k
=
lim
k
→
∞
(
x
2
k
−
x
2
k
−
2
)
=
0.
对于两个子列分别应用 题 4 的结论,有
lim
k
→
∞
(
x
2
k
−
1
−
x
2
k
−
3
)
=
0
⟹
lim
k
→
∞
x
2
k
−
1
k
=
0
,
lim
k
→
∞
(
x
2
k
−
x
2
k
−
2
)
=
0
⟹
lim
k
→
∞
x
2
k
k
=
0.
构造数列 { z n } \{z_{n}\} {zn},其中
z n = x n n . z_{n} = \frac{x_{n}}{n}. zn=nxn.
对于 { z n } \{z_{n}\} {zn} 的奇数列 { z 2 k − 1 } \{z_{2k-1}\} {z2k−1},有
lim k → ∞ x 2 k − 1 2 k − 1 = lim k → ∞ ( x 2 k − 1 k ⋅ k 2 k − 1 ) = 0. \lim_{k \rightarrow \infty}\frac{x_{2k-1}}{2k-1} = \lim_{k \rightarrow \infty}\left(\frac{x_{2k-1}}{k} \cdot \frac{k}{2k-1}\right) = 0. k→∞lim2k−1x2k−1=k→∞lim(kx2k−1⋅2k−1k)=0.
对于 { z n } \{z_{n}\} {zn} 的偶数列 { z 2 k } \{z_{2k}\} {z2k},有
lim k → ∞ x 2 k 2 k = lim k → ∞ ( x 2 k k ⋅ k 2 k ) = 0. \lim_{k \rightarrow \infty}\frac{x_{2k}}{2k} = \lim_{k \rightarrow \infty}\left(\frac{x_{2k}}{k} \cdot \frac{k}{2k}\right) = 0. k→∞lim2kx2k=k→∞lim(kx2k⋅2kk)=0.
所以 { z n } \{z_{n}\} {zn} 的奇数列与偶数列收敛于同一极限 0 0 0,从而 { z n } \{z_{n}\} {zn} 收敛于 0 0 0.
证毕
8. 设 lim n → ∞ ( x n − x n − 2 ) = 0 \underset{n \rightarrow \infty}{\lim}\left(x_{n}-x_{n-2}\right)=0 n→∞lim(xn−xn−2)=0,证明:
lim n → ∞ x n − x n − 1 n = 0. \lim_{n \rightarrow \infty}\frac{x_{n}-x_{n-1}}{n} = 0. n→∞limnxn−xn−1=0.
9. 设数列
{
a
n
}
\{a_{n}\}
{an} 满足条件
0
<
a
1
<
1
0
lim n → ∞ n a n = 1. \lim_{n \rightarrow \infty}na_{n} = 1. n→∞limnan=1.
证:利用数学归纳法,容易证明
0
<
a
n
<
1
,
∀
n
∈
N
+
0
根据递推公式,可得
a n + 1 − a n = − a n 2 < 0. a_{n+1} - a_{n} = -a_{n}^{2} < 0. an+1−an=−an2<0.
因此
{
a
n
}
\{a_{n}\}
{an} 单调减小且有下界。由 单调有界数列收敛定理,
{
a
n
}
\{a_{n}\}
{an} 收敛。
不妨设 lim n → ∞ a n = a \underset{n \rightarrow \infty}{\lim}a_{n}=a n→∞liman=a,则对递推公式两端同取极限,可得
lim n → ∞ a n = 0. \lim_{n \rightarrow \infty}a_{n} = 0. n→∞liman=0.
因此
lim
n
→
∞
1
a
n
=
+
∞
.
\lim_{n \rightarrow \infty}\frac{1}{a_{n}}=+\infty.
n→∞liman1=+∞.
而
{
1
a
n
}
\{\frac{1}{a_{n}}\}
{an1} 显然是单调增加的,由 Stolz 定理,可得
lim n → ∞ n a n = n 1 a n = lim n → ∞ ( n + 1 ) − n 1 a n + 1 − 1 a n = lim n → ∞ ( 1 − a n ) = 1. \lim_{n \rightarrow \infty}na_{n} = \frac{n}{\frac{1}{a_{n}}}=\lim_{n \rightarrow \infty}\frac{(n+1)-n}{\frac{1}{a_{n+1}}-\frac{1}{a_{n}}} = \lim_{n \rightarrow \infty}(1-a_{n}) = 1. n→∞limnan=an1n=n→∞liman+11−an1(n+1)−n=n→∞lim(1−an)=1.
证毕
10. 若 lim n → ∞ a n = α \underset{n \rightarrow \infty}{\lim}a_{n} = \alpha n→∞liman=α, lim n → ∞ b n = β \underset{n \rightarrow \infty}{\lim}b_{n} = \beta n→∞limbn=β,证明:
lim n → ∞ a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = α β . \lim_{n \rightarrow \infty} \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} = \alpha\beta. n→∞limna1bn+a2bn−1+⋯+anb1=αβ.
证:构造两个数列 { x n } \{x_{n}\} {xn}, { y n } \{y_{n}\} {yn},其中
a n = a + x n , b n = b + y n . a_{n} = a+x_{n},\quad b_{n} = b+y_{n}. an=a+xn,bn=b+yn.
显然,
lim n → ∞ x n = lim n → ∞ y n = 0. \lim_{n \rightarrow \infty}x_{n} = \lim_{n \rightarrow\infty}y_{n} = 0. n→∞limxn=n→∞limyn=0.
则
a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = a n ⋅ ∑ k = 1 n y k + b n ⋅ ∑ k = 1 n x k + 1 n ∑ k = 1 n x k y n − k + α β . \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} = \frac{a}{n}\cdot \sum_{k=1}^{n}y_{k} + \frac{b}{n} \cdot \sum_{k=1}^{n}x_{k} + \frac{1}{n}\sum_{k=1}^{n}x_{k}y_{n-k} + \alpha \beta. na1bn+a2bn−1+⋯+anb1=na⋅k=1∑nyk+nb⋅k=1∑nxk+n1k=1∑nxkyn−k+αβ.
收敛数列必定有界,考虑
{
x
n
}
\{x_{n}\}
{xn}(或者
{
y
n
}
\{y_{n}\}
{yn}),一定存在
m
,
M
∈
R
m,M\in \mathbb{R}
m,M∈R,使得
m
<
x
n
<
M
m
于是,
a n ⋅ ∑ k = 1 n y k + b n ⋅ ∑ k = 1 n x k + m n ∑ k = 1 n y k + α β < a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n < a n ⋅ ∑ k = 1 n y k + b n ⋅ ∑ k = 1 n x k + M n ∑ k = 1 n y k + α β . \frac{a}{n}\cdot \sum_{k=1}^{n}y_{k} + \frac{b}{n} \cdot \sum_{k=1}^{n}x_{k} + \frac{m}{n}\sum_{k=1}^{n}y_{k} + \alpha \beta < \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} < \frac{a}{n}\cdot \sum_{k=1}^{n}y_{k} + \frac{b}{n} \cdot \sum_{k=1}^{n}x_{k} + \frac{M}{n}\sum_{k=1}^{n}y_{k} + \alpha \beta. na⋅k=1∑nyk+nb⋅k=1∑nxk+nmk=1∑nyk+αβ<na1bn+a2bn−1+⋯+anb1<na⋅k=1∑nyk+nb⋅k=1∑nxk+nMk=1∑nyk+αβ.
由 Cauchy 命题 以及数列极限的夹逼性,可得
lim n → ∞ a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = α β . \lim_{n \rightarrow \infty} \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} = \alpha\beta. n→∞limna1bn+a2bn−1+⋯+anb1=αβ.
证毕
[1] 谢惠民. 数学分析习题课讲义. 第1版. 上册. 北京:高等教育出版社.