目录
1、rt_system_scheduler_init()函数
2、rt_system_scheduler_start()函数
3、rt_schedule_insert_thread()函数
4、rt_schedule_remove_thread()函数
6、_rt_scheduler_stack_check()函数
此函数用于初始化系统调度器。
1)初始化线程优先级链表数组
2)初始化当前线程优先级,当前线程控制块,线程就绪优先级组
3)当最大线程数大于32时,初始化线程就绪表
4)初始化线程僵尸链表
- void rt_system_scheduler_init(void)
- {
- register rt_base_t offset;
-
- rt_scheduler_lock_nest = 0;
-
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("start scheduler: max priority 0x%02x\n",
- RT_THREAD_PRIORITY_MAX));
-
- for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
- {
- rt_list_init(&rt_thread_priority_table[offset]); //初始化线程优先级链表数组
- }
-
- rt_current_priority = RT_THREAD_PRIORITY_MAX - 1; //初始化当前线程优先级
- rt_current_thread = RT_NULL; //初始化当前线程控制块
-
- rt_thread_ready_priority_group = 0; //初始化线程就绪优先级组
-
- #if RT_THREAD_PRIORITY_MAX > 32 //最大线程数大于32
- rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table)); //初始化线程就绪表
- #endif
-
- rt_list_init(&rt_thread_defunct); //初始化线程僵尸链表
- }
此函数用于启动调度器。
1)计算最高就绪优先级
2)获取要切换的线程
3)切换到新的线程运行
- void rt_system_scheduler_start(void)
- {
- register struct rt_thread *to_thread;
- register rt_ubase_t highest_ready_priority;
-
- /* 计算最高就绪优先级 */
- #if RT_THREAD_PRIORITY_MAX > 32
- register rt_ubase_t number;
-
- number = __rt_ffs(rt_thread_ready_priority_group) - 1;
- highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
- #else
- highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
- #endif
-
- /* 获取要切换的线程 */
- to_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
- struct rt_thread,
- tlist);
-
- rt_current_thread = to_thread;
-
- /* 切换到新线程 */
- rt_hw_context_switch_to((rt_uint32_t)&to_thread->sp);
-
- /* never come back */
- }
此函数用于将线程加入到调度器。
1)改变线程状态为RT_THREAD_READY
2)将线程插入到就绪链链表
3)设置优先级就绪相关变量(rt_thread_ready_table和rt_thread_ready_priority_group )
- void rt_schedule_insert_thread(struct rt_thread *thread)
- {
- register rt_base_t temp;
-
- RT_ASSERT(thread != RT_NULL);
-
- temp = rt_hw_interrupt_disable(); //关中断
-
- thread->stat = RT_THREAD_READY | (thread->stat & ~RT_THREAD_STAT_MASK); //改变线程状态为RT_THREAD_READY
-
- rt_list_insert_before(&(rt_thread_priority_table[thread->current_priority]),
- &(thread->tlist)); //将线程插入到就绪链链表
-
- /* 打印信息 */
- #if RT_THREAD_PRIORITY_MAX <= 32
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("insert thread[%.*s], the priority: %d\n",
- RT_NAME_MAX, thread->name, thread->current_priority));
- #else
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER,
- ("insert thread[%.*s], the priority: %d 0x%x %d\n",
- RT_NAME_MAX,
- thread->name,
- thread->number,
- thread->number_mask,
- thread->high_mask));
- #endif
-
- /* 设置优先级就绪相关变量 */
- #if RT_THREAD_PRIORITY_MAX > 32
- rt_thread_ready_table[thread->number] |= thread->high_mask;
- #endif
- rt_thread_ready_priority_group |= thread->number_mask;
-
- rt_hw_interrupt_enable(temp); //开中断
- }
此函数用于从调度器移除线程。
1)从就绪链表移除线程节点
2)如果当前优先级没有其他就绪的线程,则取消该优先级的就绪
- void rt_schedule_remove_thread(struct rt_thread *thread)
- {
- register rt_base_t temp;
-
- RT_ASSERT(thread != RT_NULL);
-
- temp = rt_hw_interrupt_disable(); //关中断
-
- /* 打印信息 */
- #if RT_THREAD_PRIORITY_MAX <= 32
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("remove thread[%.*s], the priority: %d\n",
- RT_NAME_MAX, thread->name,
- thread->current_priority));
- #else
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER,
- ("remove thread[%.*s], the priority: %d 0x%x %d\n",
- RT_NAME_MAX,
- thread->name,
- thread->number,
- thread->number_mask,
- thread->high_mask));
- #endif
-
- rt_list_remove(&(thread->tlist)); //从就绪链表移除线程节点
-
- /* 如果当前优先级没有其他就绪的线程,则取消该优先级的就绪 */
- if (rt_list_isempty(&(rt_thread_priority_table[thread->current_priority])))
- {
- #if RT_THREAD_PRIORITY_MAX > 32
- rt_thread_ready_table[thread->number] &= ~thread->high_mask;
- if (rt_thread_ready_table[thread->number] == 0)
- {
- rt_thread_ready_priority_group &= ~thread->number_mask;
- }
- #else
- rt_thread_ready_priority_group &= ~thread->number_mask;
- #endif
- }
-
- rt_hw_interrupt_enable(temp); //开中断
- }
此函数用于进行一次调度。
1)检查是否可以调度
2)计算最高就绪优先级
3)获取要切换的线程
4)调用钩子回调函数
5)如果使能栈检查,调用_rt_scheduler_stack_check()函数
6)进行上下文切换
- void rt_schedule(void)
- {
- rt_base_t level;
- struct rt_thread *to_thread;
- struct rt_thread *from_thread;
-
- level = rt_hw_interrupt_disable(); //关中断
-
- if (rt_scheduler_lock_nest == 0) //检查是否可以调度
- {
- register rt_ubase_t highest_ready_priority;
- /* 计算最高就绪优先级 */
- #if RT_THREAD_PRIORITY_MAX <= 32
- highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
- #else
- register rt_ubase_t number;
-
- number = __rt_ffs(rt_thread_ready_priority_group) - 1;
- highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
- #endif
-
- /* 获取要切换的线程 */
- to_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
- struct rt_thread,
- tlist);
-
- if (to_thread != rt_current_thread) //目标线程不等于当前线程
- {
- /* 设置当前优先级,当前线程控制块 */
- rt_current_priority = (rt_uint8_t)highest_ready_priority;
- from_thread = rt_current_thread;
- rt_current_thread = to_thread;
-
- RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (from_thread, to_thread)); //调用回调函数
-
- /* 打印信息 */
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER,
- ("[%d]switch to priority#%d "
- "thread:%.*s(sp:0x%p), "
- "from thread:%.*s(sp: 0x%p)\n",
- rt_interrupt_nest, highest_ready_priority,
- RT_NAME_MAX, to_thread->name, to_thread->sp,
- RT_NAME_MAX, from_thread->name, from_thread->sp));
-
- #ifdef RT_USING_OVERFLOW_CHECK
- _rt_scheduler_stack_check(to_thread);
- #endif
-
- /* 进行上下文切换 */
- if (rt_interrupt_nest == 0)
- {
- rt_hw_context_switch((rt_ubase_t)&from_thread->sp,
- (rt_ubase_t)&to_thread->sp);
-
- rt_hw_interrupt_enable(level); //开中断
-
- return ;
- }
- else
- {
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("switch in interrupt\n"));
-
- rt_hw_context_switch_interrupt((rt_ubase_t)&from_thread->sp,
- (rt_ubase_t)&to_thread->sp);
- }
- }
- }
-
- rt_hw_interrupt_enable(level); //开中断
- }
此函数用于检查栈的情况。
- static void _rt_scheduler_stack_check(struct rt_thread *thread)
- {
- RT_ASSERT(thread != RT_NULL);
-
- #if defined(ARCH_CPU_STACK_GROWS_UPWARD)
- if (*((rt_uint8_t *)((rt_ubase_t)thread->stack_addr + thread->stack_size - 1)) != '#' ||
- #else
- if (*((rt_uint8_t *)thread->stack_addr) != '#' ||
- #endif
- (rt_ubase_t)thread->sp <= (rt_ubase_t)thread->stack_addr ||
- (rt_ubase_t)thread->sp >
- (rt_ubase_t)thread->stack_addr + (rt_ubase_t)thread->stack_size)
- {
- rt_ubase_t level;
-
- rt_kprintf("thread:%s stack overflow\n", thread->name);
-
- level = rt_hw_interrupt_disable();
- while (level);
- }
- #if defined(ARCH_CPU_STACK_GROWS_UPWARD)
- else if ((rt_ubase_t)thread->sp > ((rt_ubase_t)thread->stack_addr + thread->stack_size))
- {
- rt_kprintf("warning: %s stack is close to the top of stack address.\n",
- thread->name);
- }
- #else
- else if ((rt_ubase_t)thread->sp <= ((rt_ubase_t)thread->stack_addr + 32))
- {
- rt_kprintf("warning: %s stack is close to end of stack address.\n",
- thread->name);
- }
- #endif
- }
当需要进入临界区时,调用此函数。
- void rt_enter_critical(void)
- {
- register rt_base_t level;
-
- level = rt_hw_interrupt_disable(); //关中断
-
- rt_scheduler_lock_nest ++; //调度锁加1
-
- rt_hw_interrupt_enable(level); //开中断
- }
当需要退出临界区时,调用此函数。
- void rt_exit_critical(void)
- {
- register rt_base_t level;
-
- level = rt_hw_interrupt_disable(); //关中断
-
- rt_scheduler_lock_nest --;
- if (rt_scheduler_lock_nest <= 0)
- {
- rt_scheduler_lock_nest = 0;
-
- rt_hw_interrupt_enable(level); //开中断
-
- if (rt_current_thread)
- {
- rt_schedule(); //调度
- }
- }
- else
- {
- rt_hw_interrupt_enable(level); //开中断
- }
- }
此函数用于返回rt_scheduler_lock_nest
- rt_uint16_t rt_critical_level(void)
- {
- return rt_scheduler_lock_nest;
- }
设置调度锁回调钩子函数。
- void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to))
- {
- rt_scheduler_hook = hook;
- }