来源|The Robot Brains Podcast
翻译|程浩源、胡燕君、许涵如、董文文
五年前,AI领域的知名研究者Andrej Karpathy发文称,传统人工编程属于“软件1.0”,“软件2.0”时代将以神经网络来编程,在这个过渡过程中,将涌现像GitHub这样的重量级平台。
AI届网红公司“抱抱脸(Hugging Face)”有志于成为“软件2.0”时代的GitHub。在Hugging Face上,用户可以托管机器学习模型和数据集等,对它们进行共享、协作和评价,最后将它们投入生产应用,这种模式有点像Github上的托管和协作模式。
如今,依靠明星项目Transformers库走红的Hugging Face的关注点不止于NLP库。Hugging Face已经共享了超100,000个预训练模型,10,000个数据集,涵盖了 NLP、计算机视觉、语音、时间序列、生物学、强化学习等领域,以帮助科学家和相关从业者更好地构建模型,并将其用于产品或工作流程。
对于这些耀眼的成绩,在此前的《一个GitHub史上增长最快的AI项目》一文中,Hugging Face的CEO兼联合创始人Clément Delangue分析称,主要是因为Hugging Face弥补了科学与生产之间的鸿沟,通过搭建平台为开源界和科学界赋能,所产生的价值比通过搭建专有工具产生的价值要高上千倍,而很多开源软件和公司都没有做到这一点。
Hugging Face培育了一个庞大的开源社区,商业化似乎也顺理成章。目前,已有超过10,000家公司在使用他们提供的产品和服务,其中付费用户超过1000。在资本市场,Hugging Face也备受青睐,它于今年5月完成1亿美元的C轮融资,估值达到20亿美元。
在Pieter Abbeel近期主持的The Robot Brains Podcast节目中,Clement Delangue聊了聊Hugging Face的发展历程,开源协作和商业化以及机器学习行业的发展。以下为对话内容,由OneFlow社区编译。
1
从研发聊天机器人到开源平台
Pieter:2016年当你们创业时,为什么一开始决定开发聊天机器人?后来又是怎样改变想法搭建了机器学习开源库?
Clement:我和Julien Chaumond、Thomas Wolf一起创办了Hugging Face。我们非常热爱机器学习,认为机器学习代表未来,是我们想为之奋斗的事业。
我们希望挑战机器学习领域最难的方向,所以决定开发一个娱乐型的开放域对话式AI,就像科幻电影《Her》里面的AI那样,可以跟人聊天气、朋友、爱情和体育比赛等各种话题。市场上还没有人很好地做出这样的聊天机器人,当时的Siri和Alexa都是事务型AI,主要是为了帮助人类完成某些任务,缺乏趣味性和娱乐性。所以我们就定下了这个创业方向。
为了做好开放域的对话式AI,我们必须做好一系列不同的机器学习任务。我们需要从文本中提取信息,理解文本意图和情感,还要生成回答,对话中涉及图片时还需要进行图像识别。我们还希望AI能够驾驭多种聊天话题,所以需要多种数据集,比如聊体育比赛要有体育数据集,聊天气要有天气数据集等等。
刚开始的两年我们都在做这件事,很幸运在创业初期就能够把自己想做的事做好。
后来就搭建了Hugging Face平台,上面有各种不同的模型和数据集,几乎想到什么就加进去,因为我们一直希望能为整个机器学习社区做贡献。在我们决定开源后,就得到了热烈反响,大家都踊跃地贡献代码,很多公司