前置知识:
定义(三阶行列式) 设有 9 个数排成 3 行 3 列(横排称行、竖排称列)的数表
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
(1)
a11a12a13a21a22a23a31a32a33 \tag{1}
a11a21a31a12a22a32a13a23a33(1)
表达式
a
11
a
22
a
33
+
a
12
a
23
a
31
+
a
13
a
21
a
32
−
a
11
a
23
a
32
−
a
12
a
21
a
33
−
a
13
a
22
a
31
a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}
a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31 称为数表 (1) 所确定的 三阶行列式,并记作
∣
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
∣
(2)
|a11a12a13a21a22a23a31a32a33| \tag{2}
a11a21a31a12a22a32a13a23a33
(2)
遵循二阶行列式的对角线法则,我们将三阶行列式中平行于主对角线的连线的三个元素的乘积冠以正号,将平行于副对角线的连线的三个元素的乘积冠以负号。