Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较。
前缀树的3个基本性质:
时间复杂度:
O
(
L
)
O(L)
O(L),
L
L
L是字符串的长度
空间复杂度:
O
(
n
2
)
O(n^2)
O(n2),最差情况下每个字符串都不相同。
leetcode208 实现前缀树
如何去实现一个前缀树?
struct Node{
Node():isEnd(false){
child.resize(26);//小写字母最多有26个
};
~Node(){
for(auto ch : child){
if(ch)delete ch;
}
}
//标记当前结点是否是字符串最后一位
bool isEnd;
//有哪些孩子节点
vector<Node*> child;
};
这里为什么不用存储当前结点代表的字符呢?
因为当查到到当前节点时,说明查找的这个一个字符已经存在。换句话说,该节点的字符存储在父节点中。
实现初始化、查找某一个字符串是否在该树中、查找某一个前缀是否在该树中、插入一个字符串。
class Trie {
public:
Trie() {
root = new Node;
}
~Trie(){
delete root;
}
//插入字符串
void insert(string word) {
Node* p = root;
for(auto c : word){
if(!p->child[c - 'a'])
p->child[c - 'a'] = new Node;
p = p->child[c - 'a'];
}
p->isEnd = true;
}
//查找某一个字符串是否在该树中
bool search(string word) {
Node* p = root;
for(auto c : word){
if(!p->child[c - 'a'])return false;
p = p->child[c - 'a'];
}
return p->isEnd;
}
//查找某一个前缀是否在该树中
bool startsWith(string prefix) {
Node* p = root;
for(auto c : prefix){
if(!p->child[c - 'a'])return false;
p = p->child[c - 'a'];
}
return true;
}
private:
Node* root;
};
注意内存泄漏问题
vector
,也可以用哈希表替代,unordered_set