• paddle 复现ResNet模型(只关注模型)


    ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。
    论文地址:“Deep_Residual_Learning_for_Image_Recognition”

    二、对总体网络的介绍
    1、网络亮点
    网络提出了residual结构(残差结构),可有效缓解随网络层数的加深而导致的梯度消失和梯度爆炸现象。从而可以搭建超深的网络结构(突破1000层)。

    2、网络构成
    网络大体上由以下两种block构成:


    Basicblock(用于resnet18,resnet34)


    Bottleneckblock(用于resnet50,resnet101,resnet152)

    仔细思考为什么??

     3、网络结构

     

    三、论文复现

    3.1paddle 依赖包

    1. import paddle
    2. import paddle.nn as nn
    3. from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, Linear, ReLU, BatchNorm2D
    4. import paddle.nn.functional as F

    3.2 建立Basicblock

     在特征矩阵的大小和通道数发生改变时,应在shortcut中对特征矩阵进行卷积,使shortcut输出的特征矩阵和主分支的大小相同,便于相加。

    1. class Basicblock(paddle.nn.Layer):
    2. def __init__(self, in_channel, out_channel, stride=1):
    3. super(Basicblock, self).__init__()
    4. self.stride = stride
    5. self.conv0 = Conv2D(in_channel, out_channel, 3, stride=stride, padding=1)
    6. self.conv1 = Conv2D(out_channel, out_channel, 3, stride=1, padding=1)
    7. self.conv2 = Conv2D(in_channel, out_channel, 1, stride=stride)
    8. self.bn0 = BatchNorm2D(out_channel)
    9. self.bn1 = BatchNorm2D(out_channel)
    10. self.bn2 = BatchNorm2D(out_channel)
    11. def forward(self, inputs):
    12. y = inputs
    13. x = self.conv0(inputs)
    14. x = self.bn0(x)
    15. x = F.relu(x)
    16. x = self.conv1(x)
    17. x = self.bn1(x)
    18. if self.stride == 2:
    19. y = self.conv2(y)
    20. y = self.bn2(y)
    21. z = F.relu(x+y)
    22. return z

    3.3 建立Bottleneckblock

    1. class Bottleneckblock(paddle.nn.Layer):
    2. def __init__(self, inplane, in_channel, out_channel, stride=1, start=False):
    3. super(Bottleneckblock, self).__init__()
    4. self.stride = stride
    5. self.start = start
    6. self.conv0 = Conv2D(in_channel, inplane, 1, stride = stride)
    7. self.conv1 = Conv2D(inplane, inplane, 3, stride=1, padding=1)
    8. self.conv2 = Conv2D(inplane, out_channel, 1, stride=1)
    9. self.conv3 = Conv2D(in_channel, out_channel, 1, stride = stride)
    10. self.bn0 = BatchNorm2D(inplane)
    11. self.bn1 = BatchNorm2D(inplane)
    12. self.bn2 = BatchNorm2D(out_channel)
    13. self.bn3 = BatchNorm2D(out_channel)
    14. def forward(self, inputs):
    15. y = inputs
    16. x = self.conv0(inputs)
    17. x = self.bn0(x)
    18. x = F.relu(x)
    19. x = self.conv1(x)
    20. x = self.bn1(x)
    21. x = F.relu(x)
    22. x = self.conv2(x)
    23. x = self.bn2(x)
    24. if self.start:
    25. y = self.conv3(y)
    26. y = self.bn3(y)
    27. z = F.relu(x+y)
    28. return z

    3.4 搭建Resnet的主干
    值得注意的细节

    1.在使用basic_layer的block中,第一个block保留原通道,之后的block因为承接上一个block所以通道数减半。

    2.在使用bottleneck_layer的block中,在每一块block内部,输出block时通道深度为输入通道深度乘4,第一个block保留原通道,因为和第一个卷积池化后的通道数和输入通道数一样为64.
     

    1. class Resnet(paddle.nn.Layer):
    2. def __init__(self, num, bottlenet):
    3. super(Resnet, self).__init__()
    4. self.conv0 = Conv2D(3, 64, 7, stride=2)
    5. self.bn = BatchNorm2D(64)
    6. self.pool1 = MaxPool2D(3, stride=2)
    7. if bottlenet:
    8. self.layer0 = self.add_bottleneck_layer(num[0], 64, start = True)
    9. self.layer1 = self.add_bottleneck_layer(num[1], 128)
    10. self.layer2 = self.add_bottleneck_layer(num[2], 256)
    11. self.layer3 = self.add_bottleneck_layer(num[3], 512)
    12. else:
    13. self.layer0 = self.add_basic_layer(num[0], 64, start = True)
    14. self.layer1 = self.add_basic_layer(num[1], 128)
    15. self.layer2 = self.add_basic_layer(num[2], 256)
    16. self.layer3 = self.add_basic_layer(num[3], 512)
    17. self.pool2 = AdaptiveAvgPool2D(output_size = (1, 1))
    18. def add_basic_layer(self, num, inplane, start = False):
    19. layer = []
    20. if start:
    21. layer.append(Basicblock(inplane, inplane))
    22. else:
    23. layer.append(Basicblock(inplane//2, inplane, stride = 2))
    24. for i in range(num-1):
    25. layer.append(Basicblock(inplane, inplane))
    26. return nn.Sequential(*layer)
    27. def add_bottleneck_layer(self, num, inplane, start = False):
    28. layer = []
    29. if start:
    30. layer.append(Bottleneckblock(inplane, inplane, inplane*4, start = True))
    31. else:
    32. layer.append(Bottleneckblock(inplane, inplane*2, inplane*4, stride = 2, start = True))
    33. for i in range(num-1):
    34. layer.append(Bottleneckblock(inplane, inplane*4, inplane*4))
    35. return nn.Sequential(*layer)
    36. def forward(self, inputs):
    37. x = self.conv0(inputs)
    38. x = self.bn(x)
    39. x = self.pool1(x)
    40. x = self.layer0(x)
    41. x = self.layer1(x)
    42. x = self.layer2(x)
    43. x = self.layer3(x)
    44. x = self.pool2(x)
    45. x = paddle.squeeze(x)
    46. return x

    3.5 具体化网络

    就是你想要什么样的网络,上面提出来的几种 resnet18,resnet50,resnet101 等等

    这个是resnet18

    1. def resnet18():
    2. return Resnet([2, 2, 2, 2], bottlenet=False)

    这个是resnet34

    1. def resnet34():
    2. return Resnet([3, 4, 6, 3], bottlenet=False)

     这个是resnet50

    1. def resnet50():
    2. return Resnet([3, 4, 6, 3], bottlenet=True)

     这个是resnet101

    1. def resnet101():
    2. return Resnet([3, 4, 23, 3], bottlenet=True)

    这个是resnet152

    1. def resnet152():
    2. return Resnet([3, 8, 36, 3], bottlenet=True)

    到此  resnet的模型已经建立好了。跑一下paddle  看一下网络架构吧

    四、查看网络结构

    1. model=resnet18()
    2. paddle.summary(model, (1, 3, 224, 224))

    运行结果:

    1. -------------------------------------------------------------------------------
    2. Layer (type) Input Shape Output Shape Param #
    3. ===============================================================================
    4. Conv2D-1 [[1, 3, 224, 224]] [1, 64, 109, 109] 9,472
    5. BatchNorm2D-1 [[1, 64, 109, 109]] [1, 64, 109, 109] 256
    6. MaxPool2D-1 [[1, 64, 109, 109]] [1, 64, 54, 54] 0
    7. Conv2D-2 [[1, 64, 54, 54]] [1, 64, 54, 54] 36,928
    8. BatchNorm2D-2 [[1, 64, 54, 54]] [1, 64, 54, 54] 256
    9. Conv2D-3 [[1, 64, 54, 54]] [1, 64, 54, 54] 36,928
    10. BatchNorm2D-3 [[1, 64, 54, 54]] [1, 64, 54, 54] 256
    11. Basicblock-1 [[1, 64, 54, 54]] [1, 64, 54, 54] 0
    12. Conv2D-5 [[1, 64, 54, 54]] [1, 64, 54, 54] 36,928
    13. BatchNorm2D-5 [[1, 64, 54, 54]] [1, 64, 54, 54] 256
    14. Conv2D-6 [[1, 64, 54, 54]] [1, 64, 54, 54] 36,928
    15. BatchNorm2D-6 [[1, 64, 54, 54]] [1, 64, 54, 54] 256
    16. Basicblock-2 [[1, 64, 54, 54]] [1, 64, 54, 54] 0
    17. Conv2D-8 [[1, 64, 54, 54]] [1, 128, 27, 27] 73,856
    18. BatchNorm2D-8 [[1, 128, 27, 27]] [1, 128, 27, 27] 512
    19. Conv2D-9 [[1, 128, 27, 27]] [1, 128, 27, 27] 147,584
    20. BatchNorm2D-9 [[1, 128, 27, 27]] [1, 128, 27, 27] 512
    21. Conv2D-10 [[1, 64, 54, 54]] [1, 128, 27, 27] 8,320
    22. BatchNorm2D-10 [[1, 128, 27, 27]] [1, 128, 27, 27] 512
    23. Basicblock-3 [[1, 64, 54, 54]] [1, 128, 27, 27] 0
    24. Conv2D-11 [[1, 128, 27, 27]] [1, 128, 27, 27] 147,584
    25. BatchNorm2D-11 [[1, 128, 27, 27]] [1, 128, 27, 27] 512
    26. Conv2D-12 [[1, 128, 27, 27]] [1, 128, 27, 27] 147,584
    27. BatchNorm2D-12 [[1, 128, 27, 27]] [1, 128, 27, 27] 512
    28. Basicblock-4 [[1, 128, 27, 27]] [1, 128, 27, 27] 0
    29. Conv2D-14 [[1, 128, 27, 27]] [1, 256, 14, 14] 295,168
    30. BatchNorm2D-14 [[1, 256, 14, 14]] [1, 256, 14, 14] 1,024
    31. Conv2D-15 [[1, 256, 14, 14]] [1, 256, 14, 14] 590,080
    32. BatchNorm2D-15 [[1, 256, 14, 14]] [1, 256, 14, 14] 1,024
    33. Conv2D-16 [[1, 128, 27, 27]] [1, 256, 14, 14] 33,024
    34. BatchNorm2D-16 [[1, 256, 14, 14]] [1, 256, 14, 14] 1,024
    35. Basicblock-5 [[1, 128, 27, 27]] [1, 256, 14, 14] 0
    36. Conv2D-17 [[1, 256, 14, 14]] [1, 256, 14, 14] 590,080
    37. BatchNorm2D-17 [[1, 256, 14, 14]] [1, 256, 14, 14] 1,024
    38. Conv2D-18 [[1, 256, 14, 14]] [1, 256, 14, 14] 590,080
    39. BatchNorm2D-18 [[1, 256, 14, 14]] [1, 256, 14, 14] 1,024
    40. Basicblock-6 [[1, 256, 14, 14]] [1, 256, 14, 14] 0
    41. Conv2D-20 [[1, 256, 14, 14]] [1, 512, 7, 7] 1,180,160
    42. BatchNorm2D-20 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,048
    43. Conv2D-21 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,359,808
    44. BatchNorm2D-21 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,048
    45. Conv2D-22 [[1, 256, 14, 14]] [1, 512, 7, 7] 131,584
    46. BatchNorm2D-22 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,048
    47. Basicblock-7 [[1, 256, 14, 14]] [1, 512, 7, 7] 0
    48. Conv2D-23 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,359,808
    49. BatchNorm2D-23 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,048
    50. Conv2D-24 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,359,808
    51. BatchNorm2D-24 [[1, 512, 7, 7]] [1, 512, 7, 7] 2,048
    52. Basicblock-8 [[1, 512, 7, 7]] [1, 512, 7, 7] 0
    53. AdaptiveAvgPool2D-1 [[1, 512, 7, 7]] [1, 512, 1, 1] 0
    54. ===============================================================================
    55. Total params: 11,190,912
    56. Trainable params: 11,171,712
    57. Non-trainable params: 19,200
    58. -------------------------------------------------------------------------------
    59. Input size (MB): 0.57
    60. Forward/backward pass size (MB): 42.70
    61. Params size (MB): 42.69
    62. Estimated Total Size (MB): 85.97
    63. -------------------------------------------------------------------------------

    参考:

    paddle实现resnet复现_扬志九洲的博客-CSDN博客_paddle实现resnet

  • 相关阅读:
    基于grpc从零开始搭建一个准生产分布式应用(6) - 03 - MapStruct高级映射
    【proteus】8086 写一个汇编程序并调试
    Java包装类
    文件拷贝python脚本
    NIO总结文——一篇读懂NIO整个流程
    人才早已过剩,计算机专业还值得报吗?
    测试进阶必备,这5款http接口自动化测试工具不要太香~
    JAVA计算机毕业设计读书网络社区设计Mybatis+系统+数据库+调试部署
    豪越智慧后勤管理平台为企业带来哪些转变?
    流量卡可以自己选地区吗?看完你就明白了!
  • 原文地址:https://blog.csdn.net/Vertira/article/details/126789086