• 【信号处理】Matlab实现CDR-based噪声和混响抑制


    1 内容介绍

    We investigate the estimation of the time- and frequency-dependent coherent-to-diffuse ratio (CDR) from the measured spatial coherence between two omnidirectional microphones. We illustrate the relationship between several known CDR estimators using a geometric interpretation in the complex plane, discuss the problem of estimator bias, and propose unbiased versions of the estimators. Furthermore, we show that knowledge of either the direction of arrival (DOA) of the target source or the coherence of the noise field is sufficient for an unbiased CDR estimation. Finally, we apply the CDR estimators to the problem of dereverberation, using automatic speech recognition word error rate as objective performance measure.

    2 部分代码

    %ESTIMATE_CDR_ROBUST_UNBIASED

    % Unbiased estimation of the Coherent-to-Diffuse Ratio (CDR) from the complex

    % coherence of a mixed (noisy) signal, using knowledge of both signal and noise

    % coherence. This is a variation of estimate_cdr_unbiased which shows better

    % performance in practice. Equivalent to CDRprop2 in [1].

    %

    % CDR = estimate_cdr_nodiffuse(X, N, S)

    %       X: complex coherence of mixed (noisy) signal

    %       N: coherence of noise component (real-valued)

    %       S: coherence of signal component (magnitude one)

    %

    % Reference:

    % Andreas Schwarz, Walter Kellermann, "Coherent-to-Diffuse Power Ratio

    % Estimation for Dereverberation", IEEE/ACM Trans. on Audio, Speech and

    % Lang. Proc., 2015 (under review); preprint available: arXiv:1502.03784

    % PDF: http://arxiv.org/pdf/1502.03784

    %

    % Andreas Schwarz (schwarz@lnt.de)

    % Multimedia Communications and Signal Processing

    % Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU)

    % Cauerstr. 7, 91058 Erlangen, Germany

    function CDR = estimate_cdr_robust_unbiased(Cxx,Cnn,Css)

    Css = bsxfun(@times, ones(size(Cxx)), Css);

    Cnn = bsxfun(@times, ones(size(Cxx)), Cnn);

    % limit the magnitude of Cxx to prevent numerical problems

    magnitude_threshold = 1-1e-10;

    critical = abs(Cxx)>magnitude_threshold;

    Cxx(critical) = magnitude_threshold .* Cxx(critical) ./ abs(Cxx(critical));

    CDR = 1./(-abs(Cnn-exp(1j*angle(Css)))./(Cnn.*cos(angle(Css))-1)).*abs((exp(-1j*angle(Css)).*Cnn - (exp(-1i*angle(Css)).*Cxx))./(real(exp(-1i*angle(Css)).*Cxx) - 1));

    % Ensure we don't get any negative or complex results due to numerical effects

    CDR = max(real(CDR),0);

    end

    3 运行结果

    4 参考文献

    [1] Schwarz, A. , and  W. Kellermann . "Unbiased coherent-to-diffuse ratio estimation for dereverberation." International Workshop on Acoustic Signal Enhancement IEEE, 2014.

    博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

     

  • 相关阅读:
    java毕业设计畅言情感互助网站mybatis+源码+调试部署+系统+数据库+lw
    如何解决pc端屏幕显示缩放比例125%,150%对页面布局的影响
    智能井盖传感器扣好“城市纽扣”,让市民脚下更有安全感
    CUDA与cuDNN安装教程(超详细)
    .NET Interop 互操作 COM+
    JavaScript 知识梳理基础篇(一)
    Linux权限管理
    TPO69 01|Why Snakes Have Forked Tongues|阅读真题精读|10:40-11:40+15:30-16:57
    智能农业技术:物联网、无人机与机器人引领的绿色革命
    AI发展下的伦理挑战,应当如何应对?
  • 原文地址:https://blog.csdn.net/matlab_dingdang/article/details/126757121