什么是左值?
左值是一个表示数据的表达式,如变量名或解引用的指针。
int main()
{
//以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
return 0;
}
什么是右值?
右值也是一个表示数据的表达式,如字母常量、表达式的返回值、函数的返回值(不能是左值引用返回)等等。
int main()
{
double x = 1.1, y = 2.2;
//以下几个都是常见的右值
10;
x + y;
fmin(x, y);
//错误示例(右值不能出现在赋值符号的左边)
//10 = 1;
//x + y = 1;
//fmin(x, y) = 1;
return 0;
}
而对于左值引用返回的函数来说,这些函数返回的是左值。比如string类实现的[]
运算符重载函数:
namespace cl
{
//模拟实现string类
class string
{
public:
//[]运算符重载(可读可写)
char& operator[](size_t i)
{
assert(i < _size); //检测下标的合法性
return _str[i]; //返回对应字符
}
//...
private:
char* _str; //存储字符串
size_t _size; //记录字符串当前的有效长度
//...
};
}
int main()
{
cl::string s("hello");
s[3] = 'x'; //引用返回,支持外部修改
return 0;
}
这里的[]
运算符重载函数返回的是一个字符的引用,因为它需要支持外部对该位置的字符进行修改,所以必须采用左值引用返回。之所以说这里返回的是一个左值,是因为这个返回的字符是被存储起来了的,是存储在string对象的_str对象当中的,因此这个字符是可以被取到地址的。
传统的C++语法中就有引用的语法,而C++11中新增了右值引用的语法特性,为了进行区分,于是将C++11之前的引用就叫做左值引用。但是无论左值引用还是右值引用,本质都是给对象取别名。
左值引用
左值引用就是对左值的引用,给左值取别名,通过“&”来声明。比如:
int main()
{
//以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
//以下几个是对上面左值的左值引用
int*& rp = p;
int& rb = b;
const int& rc = c;
int& pvalue = *p;
return 0;
}
右值引用
右值引用就是对右值的引用,给右值取别名,通过“&&”来声明。比如:
int main()
{
double x = 1.1, y = 2.2;
//以下几个都是常见的右值
10;
x + y;
fmin(x, y);
//以下几个都是对右值的右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
double rr3 = fmin(x, y);
return 0;
}
需要注意的是,右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,这时这个右值可以被取到地址,并且可以被修改,如果不想让被引用的右值被修改,可以用const修饰右值引用。比如:
int main()
{
double x = 1.1, y = 2.2;
int&& rr1 = 10;
const double&& rr2 = x + y;
rr1 = 20;
rr2 = 5.5; //报错
return 0;
}
左值引用可以引用右值吗?
因此const左值引用既可以引用左值,也可以引用右值。比如:
template<class T>
void func(const T& val)
{
cout << val << endl;
}
int main()
{
string s("hello");
func(s); //s为左值
func("world"); //"world"为右值
return 0;
}
右值引用可以引用左值吗?
move函数是C++11标准提供的一个函数,被move后的左值能够赋值给右值引用。比如:
int main()
{
int a = 10;
//int&& r1 = a; //右值引用不能引用左值
int&& r2 = move(a); //右值引用可以引用move以后的左值
return 0;
}
虽然const左值引用既能接收左值,又能接收右值,但左值引用终究存在短板,而C++11提出的右值引用就是用来解决左值引用的短板的。
为了更好的说明问题,这里需要借助一个深拷贝的类,下面模拟实现了一个简化版的string类。类当中实现了一些基本的成员函数,并在string的拷贝构造函数和赋值运算符重载函数当中打印了一条提示语句,这样当调用这两个函数时我们就能够知道。
代码如下:
namespace cl
{
class string
{
public:
typedef char* iterator;
iterator begin()
{
return _str; //返回字符串中第一个字符的地址
}
iterator end()
{
return _str + _size; //返回字符串中最后一个字符的后一个字符的地址
}
//构造函数
string(const char* str = "")
{
_size = strlen(str); //初始时,字符串大小设置为字符串长度
_capacity = _size; //初始时,字符串容量设置为字符串长度
_str = new char[_capacity + 1]; //为存储字符串开辟空间(多开一个用于存放'\0')
strcpy(_str, str); //将C字符串拷贝到已开好的空间
}
//交换两个对象的数据
void swap(string& s)
{
//调用库里的swap
::swap(_str, s._str); //交换两个对象的C字符串
::swap(_size, s._size); //交换两个对象的大小
::swap(_capacity, s._capacity); //交换两个对象的容量
}
//拷贝构造函数(现代写法)
string(const string& s)
:_str(nullptr)
, _size(0)
, _capacity(0)
{
cout << "string(const string& s) -- 深拷贝" << endl;
string tmp(s._str); //调用构造函数,构造出一个C字符串为s._str的对象
swap(tmp); //交换这两个对象
}
//赋值运算符重载(现代写法)
string& operator=(const string& s)
{
cout << "string& operator=(const string& s) -- 深拷贝" << endl;
string tmp(s); //用s拷贝构造出对象tmp
swap(tmp); //交换这两个对象
return *this; //返回左值(支持连续赋值)
}
//析构函数
~string()
{
delete[] _str; //释放_str指向的空间
_str = nullptr; //及时置空,防止非法访问
_size = 0; //大小置0
_capacity = 0; //容量置0
}
//[]运算符重载
char& operator[](size_t i)
{
assert(i < _size); //检测下标的合法性
return _str[i]; //返回对应字符
}
//改变容量,大小不变
void reserve(size_t n)
{
if (n > _capacity) //当n大于对象当前容量时才需执行操作
{
char* tmp = new char[n + 1]; //多开一个空间用于存放'\0'
strncpy(tmp, _str, _size + 1); //将对象原本的C字符串拷贝过来(包括'\0')
delete[] _str; //释放对象原本的空间
_str = tmp; //将新开辟的空间交给_str
_capacity = n; //容量跟着改变
}
}
//尾插字符
void push_back(char ch)
{
if (_size == _capacity) //判断是否需要增容
{
reserve(_capacity == 0 ? 4 : _capacity * 2); //将容量扩大为原来的两倍
}
_str[_size] = ch; //将字符尾插到字符串
_str[_size + 1] = '\0'; //字符串后面放上'\0'
_size++; //字符串的大小加一
}
//+=运算符重载
string& operator+=(char ch)
{
push_back(ch); //尾插字符串
return *this; //返回左值(支持连续+=)
}
//返回C类型的字符串
const char* c_str()const
{
return _str;
}
private:
char* _str;
size_t _size;
size_t _capacity;
};
}
在说明左值引用的短板之前,我们先来看看左值引用的使用场景:
void func1(cl::string s)
{}
void func2(const cl::string& s)
{}
int main()
{
cl::string s("hello world");
func1(s); //值传参
func2(s); //左值引用传参
s += 'X'; //左值引用返回
return 0;
}
因为我们模拟实现是string类的拷贝构造函数当中打印了提示语句,因此运行代码后通过程序运行结果就知道,值传参时调用了string的拷贝构造函数。
此外,因为string的+=
运算符重载函数是左值引用返回的,因此在返回+=
后的对象时不会调用拷贝构造函数,但如果将+=
运算符重载函数改为传值返回,那么重新运行代码后你就会发现多了一次拷贝构造函数的调用。
我们都知道string的拷贝是深拷贝,深拷贝的代价是比较高的,我们应该尽量避免不必要的深拷贝操作,因此这里左值引用起到的作用还是很明显的。
左值引用虽然能避免不必要的拷贝操作,但左值引用并不能完全避免。
如果函数返回的对象是一个局部变量,该变量出了函数作用域就被销毁了,这种情况下不能用左值引用作为返回值,只能以传值的方式返回,这就是左值引用的短板。
比如下面我们模拟实现一个int版本的to_string函数,这个to_string函数就不能使用左值引用返回,因为to_string函数返回的是一个局部变量。
代码如下:
namespace cl
{
cl::string to_string(int value)
{
bool flag = true;
if (value < 0)
{
flag = false;
value = 0 - value;
}
cl::string str;
while (value > 0)
{
int x = value % 10;
value /= 10;
str += (x + '0');
}
if (flag == false)
{
str += '-';
}
std::reverse(str.begin(), str.end());
return str;
}
}
此时调用to_string函数返回时,就一定会调用string的拷贝构造函数。比如:
int main()
{
cl::string s = cl::to_string(1234);
return 0;
}
C++11提出右值引用就是为了解决左值引用的这个短板的,但解决方式并不是简单的将右值引用作为函数的返回值。
右值引用和移动语句解决上述问题的方式就是,给当前模拟实现的string类增加移动构造和移动赋值方法。
移动构造
移动构造是一个构造函数,该构造函数的参数是右值引用类型的,移动构造本质就是将传入右值的资源窃取过来,占为己有,这样就避免了进行深拷贝,所以它叫做移动构造,就是窃取别人的资源来构造自己的意思。
在当前的string类中增加一个移动构造函数,该函数要做的就是调用swap函数将传入右值的资源窃取过来,为了能够更好的得知移动构造函数是否被调用,可以在该函数当中打印一条提示语句。
代码如下:
namespace cl
{
class string
{
public:
//移动构造
string(string&& s)
:_str(nullptr)
, _size(0)
, _capacity(0)
{
cout << "string(string&& s) -- 移动构造" << endl;
swap(s);
}
private:
char* _str;
size_t _size;
size_t _capacity;
};
}
移动构造和拷贝构造的区别:
给string类增加移动构造后,对于返回局部string对象的这类函数,在返回string对象时就会调用移动构造进行资源的移动,而不会再调用拷贝构造函数进行深拷贝了。比如:
int main()
{
cl::string s = cl::to_string(1234);
return 0;
}
说明一下:
编译器做的优化
实际当一个函数在返回局部对象时,会先用这个局部对象拷贝构造出一个临时对象,然后再用这个临时对象来拷贝构造我们接收返回值的对象。如下:
因此在C++11标准出来之前,对于深拷贝的类来说这里就会进行两次深拷贝,所以大部分编译器为了提高效率都对这种情况进行了优化,这种连续调用构造函数的场景通常会被优化成一次。比如:
因此按道理来说,在C++11标准出来之前这里应该调用两次string的拷贝构造函数,但最终被编译器优化成了一次,减少了一次无意义的深拷贝。(并不是所有的编译器都做了这个优化)
在C++11出来之后,编译器的这个优化仍然起到了作用。
但如果我们不是用函数的返回值来构造一个对象,而是用一个之前已经定义出来的对象来接收函数的返回值,这时编译器就无法进行优化了。比如:
这时当函数返回局部对象时,会先用这个局部对象拷贝构造出一个临时对象,然后再调用赋值运算符重载函数将这个临时对象赋值给接收函数返回值的对象。
这里需要说明的是,对于返回局部对象的函数,就算只是调用函数而不接收该函数的返回值,也会存在一次拷贝构造或移动构造,因为函数的返回值不管你接不接收都必须要有,而当函数结束后该函数内的局部对象都会被销毁,所以就算不接收函数的返回值也会调用一次拷贝构造或移动构造生成临时对象。
移动赋值
移动赋值是一个赋值运算符重载函数,该函数的参数是右值引用类型的,移动赋值也是将传入右值的资源窃取过来,占为己有,这样就避免了深拷贝,所以它叫移动赋值,就是窃取别人的资源来赋值给自己的意思。
在当前的string类中增加一个移动赋值函数,该函数要做的就是调用swap函数将传入右值的资源窃取过来,为了能够更好的得知移动赋值函数是否被调用,可以在该函数中打印一条提示语句。
代码如下:
namespace cl
{
class string
{
public:
//移动赋值
string& operator=(string&& s)
{
cout << "string& operator=(string&& s) -- 移动赋值" << endl;
swap(s);
return *this;
}
private:
char* _str;
size_t _size;
size_t _capacity;
};
}
移动赋值和原有operator=
函数的区别:
operator=
函数采用的是const左值引用接收参数,因此无论赋值时传入的是左值还是右值,都会调用原有的operator=
函数。operator=
函数做的是深拷贝,而移动赋值函数中只需要调用swap函数进行资源的转移,因此调用移动赋值的代价比调用原有operator=
的代价小。现在给string增加移动构造和移动赋值以后,就算是用一个已经定义过的string对象去接收to_string函数的返回值,此时也不会存在深拷贝。比如:
int main()
{
cl::string s;
//...
s = cl::to_string(1234);
return 0;
}
此时当to_string函数返回局部的string对象时,会先调用移动构造生成一个临时对象,然后再调用移动赋值将临时对象的资源转移给我们接收返回值的对象,这个过程虽然调用了两个函数,但这两个函数要做的只是资源的移动,而不需要进行深拷贝,大大提高了效率。
说明一下: 在实现移动赋值函数之前,该代码的运行结果理论上应该是调用一次拷贝构造,再调用一次原有的operator=
函数,但由于原有operator=
函数实现时复用了拷贝构造函数,因此代码运行后的输出结果会多打印一次拷贝构造函数的调用,这是原有operator=
函数内部调用的。
STL中的容器
C++11标准出来之后,STL中的容器都增加了移动构造和移动赋值。
以我们刚刚说的string类为例,这是string类增加的移动构造:
这是string类增加的移动赋值:
右值引用虽然不能引用左值,但也不是完全不可以,当需要用右值引用引用一个左值时,可以通过move函数将左值转化为右值。
move函数的名字具有迷惑性,move函数实际并不能搬移任何东西,该函数唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义。
move函数的定义如下:
template<class _Ty>
inline typename remove_reference<_Ty>::type&& move(_Ty&& _Arg) _NOEXCEPT
{
//forward _Arg as movable
return ((typename remove_reference<_Ty>::type&&)_Arg);
}
说明一下:
右值引用版本的插入函数
C++11标准出来之后,STL中的容器除了增加移动构造和移动赋值之外,STL容器插入接口函数也增加了右值引用版本。
以list容器的push_back接口为例:
右值引用版本插入函数的意义
如果list容器当中存储的是string对象,那么在调用push_back向list容器中插入元素时,可能会有如下几种插入方式:
int main()
{
list<cl::string> lt;
cl::string s("1111");
lt.push_back(s); //调用string的拷贝构造
lt.push_back("2222"); //调用string的移动构造
lt.push_back(cl::string("3333")); //调用string的移动构造
lt.push_back(std::move(s)); //调用string的移动构造
return 0;
}
list容器的push_back函数需要先构造一个结点,然后将该结点插入到底层的双链表当中。
模板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。比如:
template<class T>
void PerfectForward(T&& t)
{
//...
}
右值引用和万能引用的区别就是,右值引用需要是确定的类型,而万能引用是根据传入实参的类型进行推导,如果传入的实参是一个左值,那么这里的形参t就是左值引用,如果传入的实参是一个右值,那么这里的形参t就是右值引用。
下面重载了四个Func函数,这四个Func函数的参数类型分别是左值引用、const左值引用、右值引用和const右值引用。在主函数中调用PerfectForward函数时分别传入左值、右值、const左值和const右值,在PerfectForward函数中再调用Func函数。如下:
void Func(int& x)
{
cout << "左值引用" << endl;
}
void Func(const int& x)
{
cout << "const 左值引用" << endl;
}
void Func(int&& x)
{
cout << "右值引用" << endl;
}
void Func(const int&& x)
{
cout << "const 右值引用" << endl;
}
template<class T>
void PerfectForward(T&& t)
{
Func(t);
}
int main()
{
int a = 10;
PerfectForward(a); //左值
PerfectForward(move(a)); //右值
const int b = 20;
PerfectForward(b); //const 左值
PerfectForward(move(b)); //const 右值
return 0;
}
由于PerfectForward函数的参数类型是万能引用,因此既可以接收左值也可以接收右值,而我们在PerfectForward函数中调用Func函数,就是希望调用PerfectForward函数时传入左值、右值、const左值、const右值,能够匹配到对应版本的Func函数。
也就是说,右值经过一次参数传递后其属性会退化成左值,如果想要在这个过程中保持右值的属性,就需要用到完美转发。
要想在参数传递过程中保持其原有的属性,需要在传参时调用forward函数。比如:
template<class T>
void PerfectForward(T&& t)
{
Func(std::forward<T>(t));
}
经过完美转发后,调用PerfectForward函数时传入的是右值就会匹配到右值引用版本的Func函数,传入的是const右值就会匹配到const右值引用版本的Func函数,这就是完美转发的价值。
下面模拟实现了一个简化版的list类,类当中分别提供了左值引用版本和右值引用版本的push_back和insert函数。
代码如下:
namespace cl
{
template<class T>
struct ListNode
{
T _data;
ListNode* _next = nullptr;
ListNode* _prev = nullptr;
};
template<class T>
class list
{
typedef ListNode<T> node;
public:
//构造函数
list()
{
_head = new node;
_head->_next = _head;
_head->_prev = _head;
}
//左值引用版本的push_back
void push_back(const T& x)
{
insert(_head, x);
}
//右值引用版本的push_back
void push_back(T&& x)
{
insert(_head, std::forward<T>(x)); //完美转发
}
//左值引用版本的insert
void insert(node* pos, const T& x)
{
node* prev = pos->_prev;
node* newnode = new node;
newnode->_data = x;
prev->_next = newnode;
newnode->_prev = prev;
newnode->_next = pos;
pos->_prev = newnode;
}
//右值引用版本的insert
void insert(node* pos, T&& x)
{
node* prev = pos->_prev;
node* newnode = new node;
newnode->_data = std::forward<T>(x); //完美转发
prev->_next = newnode;
newnode->_prev = prev;
newnode->_next = pos;
pos->_prev = newnode;
}
private:
node* _head; //指向链表头结点的指针
};
}
下面定义一个list对象,list容器中存储的就是之前模拟实现的string类,这里分别传入左值和右值调用不同版本的push_back。比如:
int main()
{
cl::list<cl::string> lt;
cl::string s("1111");
lt.push_back(s); //调用左值引用版本的push_back
lt.push_back("2222"); //调用右值引用版本的push_back
return 0;
}
调用左值引用版本的push_back函数插入元素时,会调用string原有的operator=
函数进行深拷贝,而调用右值引用版本的push_back函数插入元素时,只会调用string的移动赋值进行资源的移动。
operator=
函数进行深拷贝。operator=
函数进行深拷贝。operator=
函数。也就是说,只要想保持右值的属性,在每次右值传参时都需要进行完美转发,实际STL库中也是通过完美转发来保持右值属性的。
注意: 代码中push_back和insert函数的参数T&&
是右值引用,而不是万能引用,因为在list对象创建时这个类就被实例化了,后续调用push_back和insert函数时,参数T&&
中的T
已经是一个确定的类型了,而不是在调用push_back和insert函数时才进行类型推导的。
与STL中的list的区别
如果将刚才测试代码中的list换成STL当中的list。
而用我们模拟实现的list时,调用的却不是string的拷贝构造和移动构造,而对应是string原有的operator=
和移动赋值。
原因是因为我们模拟实现的list容器,是通过new操作符为新结点申请内存空间的,在申请内存后会自动调用构造函数对进行其进行初始化,因此在后续用左值或右值对其进行赋值时,就会调用对应的operator=
或移动赋值进行深拷贝或资源的转移。
而STL库中的容器都是通过空间配置器获取内存的,因此在申请到内存后不会调用构造函数对其进行初始化,而是后续用左值或右值对其进行拷贝构造,因此最终调用的就是拷贝构造或移动构造。
如果想要得到与STL相同的实验结果,可以使用malloc函数申请内存,这时就不会自动调用构造函数进行初始化,然后在用定位new的方式用左值或右值对申请到的内存空间进行构造,这时调用的对应就是拷贝构造或移动构造。