欢迎来到你的第一个编程作业! 你将学习如何建立逻辑回归分类器用来识别猫。 这项作业将引导你逐步了解神经网络的思维方式,同时磨练你对深度学习的直觉。
说明:
除非指令中明确要求使用,否则请勿在代码中使用循环(for / while)。
你将学习以下内容:
首先,让我们运行下面的单元格,以导入作业中所需的包。
In [1]:
cd ../input/deeplearningai17761
/home/kesci/input/deeplearningai17761
In [2]:
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
%matplotlib inline
问题说明:你将获得一个包含以下内容的数据集(“data.h5”):
你将构建一个简单的图像识别算法,该算法可以将图片正确分类为猫和非猫。
让我们熟悉一下数据集吧, 首先通过运行以下代码来加载数据。
In [3]:
# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
我们在图像数据集(训练和测试)的末尾添加了"_orig",以便对其进行预处理。 预处理后,我们将得到train_set_x和test_set_x(标签train_set_y和test_set_y不需要任何预处理)。
train_set_x_orig和test_set_x_orig的每一行都是代表图像的数组。 你可以通过运行以下代码来可视化示例。 还可以随意更改index值并重新运行以查看其他图像。
In [4]:
# Example of a picture
index = 5
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.")
y = [0], it's a 'non-cat' picture.
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OQr35Pc9-1662529436563)(L1W2%E4%BD%9C%E4%B8%9A2%20%E7%94%A8%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E6%80%9D%E6%83%B3%E5%AE%9E%E7%8E%B0Logistic%E5%9B%9E%E5%BD%92.assets/q17i4peyk8.png)]](https://1000bd.com/contentImg/2023/11/04/002957379.png)
深度学习中的许多报错都来自于矩阵/向量尺寸不匹配。 如果你可以保持矩阵/向量的尺寸不变,那么将消除大多错误。
练习: 查找以下各项的值:
请记住,“ train_set_x_orig”是一个维度为(m_train,num_px,num_px,3)的numpy数组。 例如,你可以通过编写“ train_set_x_orig.shape [0]”来访问“ m_train”。
In [6]:
### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
### END CODE HERE ###
print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
Number of training examples: m_train = 209
Number of testing examples: m_test = 50
Height/Width of each image: num_px = 64
Each image is of size: (64, 64, 3)
train_set_x shape: (209, 64, 64, 3)
train_set_y shape: (1, 209)
test_set_x shape: (50, 64, 64, 3)
test_set_y shape: (1, 50)
预期输出:
训练集数量:m_train = 209
测试集数量:m_test = 50
每个图像的高度/宽度:num_px = 64
每个图像的大小:(64,64,3)
train_set_x维度:(209、64、64、3)
trainsety维度:(1,209)
test_set_x维度:(50、64、64、3)
test_set_y维度:(1,50)
为了方便起见,你现在应该以维度(num_px ∗ num_px ∗ 3, 1)的numpy数组重塑维度(num_px,num_px,3)的图像。 此后,我们的训练(和测试)数据集是一个numpy数组,其中每列代表一个展平的图像。 应该有m_train(和m_test)列。
练习: 重塑训练和测试数据集,以便将大小(num_px,num_px,3)的图像展平为单个形状的向量(num_px ∗ num_px ∗ 3, 1)。
当你想将维度为(a,b,c,d)的矩阵X展平为形状为(b∗c∗d, a)的矩阵X_flatten时的一个技巧是:
X_flatten = X.reshape(X.shape [0],-1).T ## 其中X.T是X的转置矩阵
In [7]:
# Reshape the training and test examples
### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
### END CODE HERE ###
print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
train_set_x_flatten shape: (12288, 209)
train_set_y shape: (1, 209)
test_set_x_flatten shape: (12288, 50)
test_set_y shape: (1, 50)
sanity check after reshaping: [17 31 56 22 33]
预期输出:
train_set_x_flatten维度:(12288,209)
trainsety维度:(1,209)
test_set_x_flatten维度:(12288,50)
test_set_y维度:(1,50)
重塑后的检查维度:[17 31 56 22 33]
为了表示彩色图像,必须为每个像素指定红、绿、蓝色通道(RGB),因此像素值实际上是一个从0到255的三个数字的向量。
机器学习中一个常见的预处理步骤是对数据集进行居中和标准化,这意味着你要从每个示例中减去整个numpy数组的均值,然后除以整个numpy数组的标准差。但是图片数据集则更为简单方便,并且只要将数据集的每一行除以255(像素通道的最大值),效果也差不多。
在训练模型期间,你将要乘以权重并向一些初始输入添加偏差以观察神经元的激活。然后,使用反向梯度传播以训练模型。但是,让特征具有相似的范围以至渐变不会爆炸是非常重要的。具体内容我们将在后面的教程中详细学习!
开始标准化我们的数据集吧!
In [8]:
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.
你需要记住的内容:
预处理数据集的常见步骤是:
现在是时候设计一种简单的算法来区分猫图像和非猫图像了。
你将使用神经网络思维方式建立Logistic回归。 下图说明了为什么“逻辑回归实际上是一个非常简单的神经网络!”
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TzKNaiiR-1662529436564)(L1W2%E4%BD%9C%E4%B8%9A2%20%E7%94%A8%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E6%80%9D%E6%83%B3%E5%AE%9E%E7%8E%B0Logistic%E5%9B%9E%E5%BD%92.assets/960.png)]](https://1000bd.com/contentImg/2023/11/04/002957483.png)
算法的数学表达式:
For one example
x
(
i
)
x^{(i)}
x(i):
z
(
i
)
=
w
T
x
(
i
)
+
b
(1)
z^{(i)} = w^T x^{(i)} + b \tag{1}
z(i)=wTx(i)+b(1)
y
^
(
i
)
=
a
(
i
)
=
s
i
g
m
o
i
d
(
z
(
i
)
)
(2)
\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2}
y^(i)=a(i)=sigmoid(z(i))(2)
L
(
a
(
i
)
,
y
(
i
)
)
=
−
y
(
i
)
log
(
a
(
i
)
)
−
(
1
−
y
(
i
)
)
log
(
1
−
a
(
i
)
)
(3)
\mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3}
L(a(i),y(i))=−y(i)log(a(i))−(1−y(i))log(1−a(i))(3)
The cost is then computed by summing over all training examples:
J = 1 m ∑ i = 1 m L ( a ( i ) , y ( i ) ) (4) J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{4} J=m1i=1∑mL(a(i),y(i))(4)
关键步骤:
在本练习中,你将执行以下步骤:
建立神经网络的主要步骤是:
1.定义模型结构(例如输入特征的数量)
2.初始化模型的参数
3.循环:
你通常会分别构建1-3,然后将它们集成到一个称为“ model()”的函数中。
练习:使用“Python基础”中的代码,实现sigmoid()。 如上图所示,你需要计算
s
i
g
m
o
i
d
(
w
T
x
+
b
)
=
1
1
+
e
−
(
w
T
x
+
b
)
sigmoid( w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}
sigmoid(wTx+b)=1+e−(wTx+b)1去预测。 使用np.exp()。
In [9]:
# GRADED FUNCTION: sigmoid
def sigmoid(z):
"""
Compute the sigmoid of z
Arguments:
z -- A scalar or numpy array of any size.
Return:
s -- sigmoid(z)
"""
### START CODE HERE ### (≈ 1 line of code)
s = 1 / (1 + np.exp(-z))
### END CODE HERE ###
return s
In [10]:
print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2]))))
sigmoid([0, 2]) = [0.5 0.88079708]
预期输出:
sigmoid([0, 2]) = [0.5 0.88079708]
练习: 在下面的单元格中实现参数初始化。 你必须将w初始化为零的向量。 如果你不知道要使用什么numpy函数,请在Numpy库的文档中查找np.zeros()。
In [11]:
# GRADED FUNCTION: initialize_with_zeros
def initialize_with_zeros(dim):
"""
This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
Argument:
dim -- size of the w vector we want (or number of parameters in this case)
Returns:
w -- initialized vector of shape (dim, 1)
b -- initialized scalar (corresponds to the bias)
"""
### START CODE HERE ### (≈ 1 line of code)
w = np.zeros((dim, 1))
b = 0
### END CODE HERE ###
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
In [12]:
dim = 2
w, b = initialize_with_zeros(dim)
print ("w = " + str(w))
print ("b = " + str(b))
w = [[0.]
[0.]]
b = 0
预期输出:
w = [[0.]
[0.]]
b = 0
对于图像输入,w的维度为(num_px × num_px × 3, 1)。
现在,你的参数已初始化,你可以执行“向前”和“向后”传播步骤来学习参数。
练习: 实现函数propagate()来计算损失函数及其梯度。
提示:
正向传播:
因为
d
L
(
a
,
y
)
d
z
=
d
L
d
z
=
(
d
L
d
a
)
⋅
(
d
a
d
z
)
\frac{dL(a,y)}{dz}=\frac{dL}{dz}=(\frac{dL}{da})\cdot (\frac{da}{dz})
dzdL(a,y)=dzdL=(dadL)⋅(dzda),
d
a
d
z
=
a
⋅
(
1
−
a
)
\frac{da}{dz}=a\cdot (1-a)
dzda=a⋅(1−a),
而
d
L
d
a
=
(
−
y
a
+
(
1
−
y
)
(
1
−
a
)
)
\frac{dL}{da}=(-\frac{y}{a}+\frac{(1-y)}{(1-a)})
dadL=(−ay+(1−a)(1−y)),因此将这两项相乘,得到:
d L d z = ( d L d a ) ⋅ ( d a d z ) = ( − y a + ( 1 − y ) ( 1 − a ) ) ⋅ a ( 1 − a ) = a − y \frac{{dL}}{{dz}} = \left( \frac{{dL}}{{da}} \right) \cdot \left(\frac{{da}}{{dz}} \right) = ( - \frac{y}{a} + \frac{(1 - y)}{(1 - a)})\cdot a(1 - a) = a - y dzdL=(dadL)⋅(dzda)=(−ay+(1−a)(1−y))⋅a(1−a)=a−y
从而得到以下两个公式:
∂ J ∂ w = 1 m X ( A − Y ) T (5) \frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T\tag{5} ∂w∂J=m1X(A−Y)T(5)
∂ J ∂ b = 1 m ∑ i = 1 m ( a ( i ) − y ( i ) ) (6) \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})\tag{6} ∂b∂J=m1i=1∑m(a(i)−y(i))(6)
In [13]:
# GRADED FUNCTION: propagate
def propagate(w, b, X, Y):
"""
Implement the cost function and its gradient for the propagation explained above
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b
Tips:
- Write your code step by step for the propagation. np.log(), np.dot()
"""
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
### START CODE HERE ### (≈ 2 lines of code)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) # compute cost
### END CODE HERE ###
# BACKWARD PROPAGATION (TO FIND GRAD)
### START CODE HERE ### (≈ 2 lines of code)
dw = 1 / m * np.dot(X, (A - Y).T)
db = 1 / m * np.sum(A - Y)
### END CODE HERE ###
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
In [14]:
w, b, X, Y = np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])
grads, cost = propagate(w, b, X, Y)
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print ("cost = " + str(cost))
dw = [[0.99993216]
[1.99980262]]
db = 0.49993523062470574
cost = 6.000064773192205
预期输出:
dw = [[0.99993216]
[1.99980262]]
db = 0.49993523062470574
cost = 6.000064773192205
练习: 写下优化函数。 目标是通过最小化损失函数 J 来学习 w 和 b。 对于参数θ,更新规则为 θ = θ − α d θ \theta = \theta - \alpha \text{ } d\theta θ=θ−α dθ,其中α是学习率。
In [15]:
# GRADED FUNCTION: optimize
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
"""
This function optimizes w and b by running a gradient descent algorithm
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps
Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
Tips:
You basically need to write down two steps and iterate through them:
1) Calculate the cost and the gradient for the current parameters. Use propagate().
2) Update the parameters using gradient descent rule for w and b.
"""
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (≈ 1-4 lines of code)
### START CODE HERE ###
grads, cost = propagate(w, b, X, Y)
### END CODE HERE ###
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (≈ 2 lines of code)
### START CODE HERE ###
w = w - learning_rate * dw
b = b - learning_rate * db
### END CODE HERE ###
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
In [16]:
params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False)
print ("w = " + str(params["w"]))
print ("b = " + str(params["b"]))
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print(costs)
w = [[0.1124579 ]
[0.23106775]]
b = 1.5593049248448891
dw = [[0.90158428]
[1.76250842]]
db = 0.4304620716786828
[6.000064773192205]
预期输出:
w = [[0.1124579 ]
[0.23106775]]
b = 1.5593049248448891
dw = [[0.90158428]
[1.76250842]]
db = 0.4304620716786828
[6.000064773192205]
练习: 上一个函数将输出学习到的w和b。 我们能够使用w和b来预测数据集X的标签。实现predict()函数。 预测分类有两个步骤:
1.计算
Y
^
=
A
=
σ
(
w
T
X
+
b
)
\hat{Y} = A = \sigma(w^T X + b)
Y^=A=σ(wTX+b)
2.将a的项转换为0(如果激活<= 0.5)或1(如果激活> 0.5),并将预测结果存储在向量“ Y_prediction”中。 如果愿意,可以在for循环中使用if / else语句。
In [17]:
# GRADED FUNCTION: predict
def predict(w, b, X):
'''
Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Returns:
Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
'''
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A = sigmoid(np.dot(w.T, X) + b)
### END CODE HERE ###
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
if A[0, i] <= 0.5:
Y_prediction[0, i] = 0
else:
Y_prediction[0, i] = 1
### END CODE HERE ###
assert(Y_prediction.shape == (1, m))
return Y_prediction
In [18]:
print ("predictions = " + str(predict(w, b, X)))
predictions = [[1. 1.]]
预期输出:
predictions = [[1. 1.]]
你需要记住以下几点:
你已经实现了以下几个函数:
现在,将所有构件(在上一部分中实现的功能)以正确的顺序放在一起,从而得到整体的模型结构。
练习: 实现模型功能,使用以下符号:
In [19]:
# GRADED FUNCTION: model
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
"""
Builds the logistic regression model by calling the function you've implemented previously
Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations
Returns:
d -- dictionary containing information about the model.
"""
### START CODE HERE ###
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
### END CODE HERE ###
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
运行以下单元格训练模型:
In [20]:
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
Cost after iteration 0: 0.693147
Cost after iteration 100: 0.584508
Cost after iteration 200: 0.466949
Cost after iteration 300: 0.376007
Cost after iteration 400: 0.331463
Cost after iteration 500: 0.303273
Cost after iteration 600: 0.279880
Cost after iteration 700: 0.260042
Cost after iteration 800: 0.242941
Cost after iteration 900: 0.228004
Cost after iteration 1000: 0.214820
Cost after iteration 1100: 0.203078
Cost after iteration 1200: 0.192544
Cost after iteration 1300: 0.183033
Cost after iteration 1400: 0.174399
Cost after iteration 1500: 0.166521
Cost after iteration 1600: 0.159305
Cost after iteration 1700: 0.152667
Cost after iteration 1800: 0.146542
Cost after iteration 1900: 0.140872
train accuracy: 99.04306220095694 %
test accuracy: 70.0 %
预期输出:
train accuracy: 99.04306220095694 %
test accuracy: 70.0 %
评价:训练准确性接近100%。 这是一个很好的情况:你的模型正在运行,并且具有足够的容量来适合训练数据。 测试误差为68%。 考虑到我们使用的数据集很小,并且逻辑回归是线性分类器,对于这个简单的模型来说,这实际上还不错。 但请放心,下周你将建立一个更好的分类器!
此外,你会看到该模型明显适合训练数据。 在本专业的稍后部分,你将学习如何减少过度拟合,例如通过使用正则化。 使用下面的代码(并更改index变量),你可以查看测试集图片上的预测。
In [21]:
# Example of a picture that was wrongly classified.
index = 1
plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))
print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[int(d["Y_prediction_test"][0,index])].decode("utf-8") + "\" picture.")
y = 1, you predicted that it is a "cat" picture.
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qilaZcmN-1662529436565)(L1W2%E4%BD%9C%E4%B8%9A2%20%E7%94%A8%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E6%80%9D%E6%83%B3%E5%AE%9E%E7%8E%B0Logistic%E5%9B%9E%E5%BD%92.assets/q15mtru0dr.png)]](https://1000bd.com/contentImg/2023/11/04/002957363.png)
让我们绘制损失函数和梯度吧。
In [22]:
# Plot learning curve (with costs)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

解释:
损失下降表明正在学习参数。 但是,你看到可以在训练集上训练更多模型。 尝试增加上面单元格中的迭代次数,然后重新运行这些单元格。 你可能会看到训练集准确性提高了,但是测试集准确性却降低了。 这称为过度拟合。
祝贺你建立了第一个图像分类模型。 让我们对其进行进一步分析,并研究如何选择学习率α。
提醒:
为了使梯度下降起作用,你必须明智地选择学习率。 学习率α决定我们更新参数的速度。 如果学习率太大,我们可能会“超出”最佳值。 同样,如果太小,将需要更多的迭代才能收敛到最佳值。 这也是为什么调整好学习率至关重要。
让我们将模型的学习曲线与选择的几种学习率进行比较。 运行下面的单元格。 这大约需要1分钟。 还可以尝试与我们初始化要包含的“ learning_rates”变量的三个值不同的值,然后看看会发生什么。
In [23]:
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
learning rate is: 0.01
train accuracy: 99.52153110047847 %
test accuracy: 68.0 %
-------------------------------------------------------
learning rate is: 0.001
train accuracy: 88.99521531100478 %
test accuracy: 64.0 %
-------------------------------------------------------
learning rate is: 0.0001
train accuracy: 68.42105263157895 %
test accuracy: 36.0 %
-------------------------------------------------------
解释:
祝贺你完成此作业。 你可以使用自己的图像并查看模型的预测输出。 要做到这一点:
1.单击此笔记本上部栏中的 “File”,然后单击"Open" 以在Coursera Hub上运行。
2.将图像添加到Jupyter Notebook的目录中,在"images"文件夹中
3.在以下代码中更改图像的名称
4.运行代码,检查算法是否正确(1 = cat,0 = non-cat)!
In [24]:
## START CODE HERE ## (PUT YOUR IMAGE NAME)
#my_image = "cat_in_iran.jpg" # change this to the name of your image file
## END CODE HERE ##
# We preprocess the image to fit your algorithm.
fname = '/home/kesci/input/deeplearningai17761/cat_in_iran.jpg'
image = np.array(plt.imread(fname))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:8: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.3.0.
Use Pillow instead: ``numpy.array(Image.fromarray(arr).resize())``.
y = 1.0, your algorithm predicts a "cat" picture.
此作业要记住的内容:
最后,如果你愿意,我们邀请你在此笔记本上尝试其他操作。 在尝试任何操作之前,请确保你正确提交。 提交后,你可以学习了解的包括:
参考书目: