按照Yaw(偏转角)->Pitch(翻滚角)->Roll(滚动角)的顺序进行旋转
Y
a
w
:
κ
⇢
旋转矩阵
R
Z
(
κ
)
Yaw:\kappa \dashrightarrow 旋转矩阵R_Z(\kappa)
Yaw:κ⇢旋转矩阵RZ(κ)
P
i
t
c
h
:
ϕ
⇢
旋转矩阵
R
Y
(
ϕ
)
Pitch:\phi \dashrightarrow 旋转矩阵R_Y(\phi)
Pitch:ϕ⇢旋转矩阵RY(ϕ)
Y
a
w
:
ω
⇢
旋转矩阵
R
X
(
ω
)
Yaw:\omega \dashrightarrow 旋转矩阵R_X(\omega)
Yaw:ω⇢旋转矩阵RX(ω)
旋转图示如下:

根据推导,存在:
R
Z
(
κ
)
=
[
c
o
s
κ
s
i
n
κ
0
−
s
i
n
κ
c
o
s
κ
0
0
0
1
]
R_Z(\kappa)= [cosκsinκ0−sinκcosκ0001]
R
Y
(
ϕ
)
=
[
c
o
s
ϕ
0
−
s
i
n
ϕ
0
1
0
s
i
n
ϕ
0
c
o
s
ϕ
]
R_Y(\phi)= [cosϕ0−sinϕ010sinϕ0cosϕ]
R
X
(
ω
)
=
[
1
0
0
0
c
o
s
ω
s
i
n
ω
0
−
s
i
n
ω
c
o
s
ω
]
R_X(\omega)= [1000cosωsinω0−sinωcosω]
按照卡尔丹旋转规则,存在旋转矩阵:
R
=
R
Z
(
κ
)
R
Y
(
ϕ
)
R
X
(
ω
)
R = R_Z(\kappa) R_Y(\phi) R_X(\omega)
R=RZ(κ)RY(ϕ)RX(ω)
R
=
[
cos
(
κ
)
sin
(
κ
)
0
−
sin
(
κ
)
cos
(
κ
)
0
0
0
1
]
[
cos
(
ϕ
)
0
−
sin
(
ϕ
)
0
1
0
sin
(
ϕ
)
0
cos
(
ϕ
)
]
[
1
0
0
0
cos
(
ω
)
sin
(
ω
)
0
−
sin
(
ω
)
cos
(
ω
)
]
R = [cos(κ)sin(κ)0−sin(κ)cos(κ)0001]
R
=
[
cos
(
κ
)
cos
(
ϕ
)
sin
(
κ
)
−
cos
(
κ
)
sin
(
ϕ
)
−
sin
(
κ
)
cos
(
ϕ
)
cos
(
κ
)
sin
(
κ
)
sin
(
ϕ
)
sin
(
ϕ
)
0
cos
(
ϕ
)
]
[
1
0
0
0
cos
(
ω
)
sin
(
ω
)
0
−
sin
(
ω
)
cos
(
ω
)
]
R = [cos(κ)cos(ϕ)sin(κ)−cos(κ)sin(ϕ)−sin(κ)cos(ϕ)cos(κ)sin(κ)sin(ϕ)sin(ϕ)0cos(ϕ)]
R
=
[
cos
(
κ
)
cos
(
ϕ
)
sin
(
κ
)
cos
(
ω
)
+
cos
(
κ
)
sin
(
ϕ
)
sin
(
ω
)
sin
(
κ
)
sin
(
ω
)
−
cos
(
κ
)
sin
(
ϕ
)
cos
(
ω
)
−
sin
(
κ
)
cos
(
ϕ
)
cos
(
κ
)
cos
(
ω
)
−
sin
(
κ
)
sin
(
ϕ
)
sin
(
ω
)
cos
(
κ
)
sin
(
ω
)
+
sin
(
κ
)
sin
(
ϕ
)
cos
(
ω
)
sin
(
ϕ
)
−
cos
(
ϕ
)
sin
(
ω
)
cos
(
ϕ
)
cos
(
ω
)
]
R = [cos(κ)cos(ϕ)sin(κ)cos(ω)+cos(κ)sin(ϕ)sin(ω)sin(κ)sin(ω)−cos(κ)sin(ϕ)cos(ω)−sin(κ)cos(ϕ)cos(κ)cos(ω)−sin(κ)sin(ϕ)sin(ω)cos(κ)sin(ω)+sin(κ)sin(ϕ)cos(ω)sin(ϕ)−cos(ϕ)sin(ω)cos(ϕ)cos(ω)]
当
κ
,
ϕ
,
ω
很小时,存在
:
当\kappa,\phi,\omega很小时,存在:
当κ,ϕ,ω很小时,存在:
cos
(
κ
)
≈
1.0
,
cos
(
ϕ
)
≈
1.0
,
cos
(
ω
)
≈
1.0
sin
(
κ
)
≈
κ
,
sin
(
ϕ
)
≈
ϕ
,
sin
(
ω
)
≈
ω
ϕ
ω
≈
0.0
,
κ
ω
≈
0.0
,
κ
ϕ
ω
≈
0.0
,
κ
ϕ
≈
0.0
\cos(\kappa)\approx1.0, \cos(\phi)\approx1.0, \cos(\omega)\approx1.0 \\ \sin(\kappa)\approx\kappa, \sin(\phi)\approx\phi, \sin(\omega)\approx\omega \\ \phi\omega\approx0.0,\kappa\omega\approx0.0,\kappa\phi\omega\approx0.0,\kappa\phi\approx0.0
cos(κ)≈1.0,cos(ϕ)≈1.0,cos(ω)≈1.0sin(κ)≈κ,sin(ϕ)≈ϕ,sin(ω)≈ωϕω≈0.0,κω≈0.0,κϕω≈0.0,κϕ≈0.0
则旋转矩阵为
:
则旋转矩阵为:
则旋转矩阵为:
R
=
[
1
κ
−
ϕ
−
κ
1
ω
ϕ
−
ω
1
]
R= [1κ−ϕ−κ1ωϕ−ω1]
参考:
[1] Harvey B R . Transformation of 3D Co-ordinates[J]. Australian Surveyor, 1986, 33(2):105-125.