给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/number-of-islands
思路:
此题需要用到图的深度遍历 dfs。 我们可以遍历这个二维数组,若是某个格子的值为 1, 说明我们遇到了岛屿,记录岛屿的 count 自增 1; 同时我们相邻的其他 1 都置为0,即该岛屿下次不再记录了 https://labuladong.github.io/algo/2/22/50/图深度遍历框架:
// 记录被遍历过的节点 boolean[] visited; // 记录从起点到当前节点的路径 boolean[] onPath; /* 图遍历框架 */ void traverse(Graph graph, int s) { if (visited[s]) return; // 经过节点 s,标记为已遍历 visited[s] = true; // 做选择:标记节点 s 在路径上 onPath[s] = true; for (int neighbor : graph.neighbors(s)) { traverse(graph, neighbor); } // 撤销选择:节点 s 离开路径 onPath[s] = false; }
java:
- class Solution {
- public int numIslands(char[][] grid) {
- int result = 0;
- int m = grid.length;
- int n = grid[0].length;
-
- boolean[][] visited = new boolean[m][n];
-
- for (int i=0;i< grid.length;i++) {
- for(int j=0;j<grid[0].length;j++) {
- if(grid[i][j] == '1') {
- result += 1;
- dfs(grid,i,j,visited);
- }
- }
- }
-
- return result;
- }
-
- public void dfs(char[][] grid, int i, int j,boolean[][] visited) {
- // 越界的 i 与 j 不需要再遍历,及时终止即可
- if(i<0 || j<0 || i>grid.length-1 || j > grid[0].length-1) {
- return;
- }
- // 当前格子为 '0' 或者被遍历过,则停止遍历
- if(grid[i][j] == '0' || visited[i][j]) {
- return;
- }
- grid[i][j] = 0;
-
- // 访问过的格子要标记为 true,避免下次被重复访问
- visited[i][j] = true;
-
-
- dfs(grid,i-1,j,visited);
- dfs(grid,i,j-1,visited);
- dfs(grid,i+1,j,visited);
- dfs(grid,i,j+1,visited);
- }
- }
c++
- class Solution {
- public:
- int numIslands(vector<vector<char>>& grid) {
- int result = 0;
-
- int row = grid.size();
- int col = grid[0].size();
- vector<vector<bool>> visited(row,vector
(col)); - for (int i=0;i<row;i++) {
- for(int j=0;j<col;j++) {
- if(grid[i][j] == '1') {
- result+=1;
- dfs(grid,visited,i,j);
- }
- }
- }
-
- return result;
- }
-
- // 当前的 grid[i][j] 为1 的话,将与其相邻的所有1都置为 0
- void dfs(vector<vector<char>>& grid, vector
>& visited, int i, int j) { - // 超出边界直接 return
- if (i<0 || i >= grid.size() || j<0 || j>= grid[0].size()) {
- return;
- }
-
- // 遍历过的不再重复遍历,为 0 节点也不再遍历
- if(visited[i][j] || grid[i][j] == '0') {
- return;
- }
-
- // 标记遍历过的节点为 true
- visited[i][j] = true;
- // 将 1 改为 0
- grid[i][j] = '0';
-
- dfs(grid,visited,i-1,j);
- dfs(grid,visited,i+1,j);
- dfs(grid,visited,i,j-1);
- dfs(grid,visited,i,j+1);
-
-
- }
- };