码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • 广义线性混合模型(GLMM)变量选择


    广义线性混合模型GLMM(Generalized Linear Mixed Model),是广义线性模型GLM 和线性混淆模型LMM 的扩展形式,于二十世纪九十年代被提出。GLMM因其借鉴了混合模型的思想,其在处理纵向数据(重复测量资料)时,被认为具有独特的优势。GLMM不仅擅长处理重复测量资料,还可以用于任何层次结构的数据(因为本质上又是多水平模型)。广义线性混合模型GLMM,可以看做是线性混合模型LMM的扩展形式,使得因变量不再要求满足正态分布;也可以看作是GLM的扩展形式,使得可以同时包含固定效应和随机效应。

    举个例子,我们认为疗效可能与服药时间相关,但是这个相关并不是简简单单的疗效随着服药时间的变化而改变。更可能的是疗效的随机波动的程度与服药时间有关。比如说,在早上10:00的时候,所有人基本上都处于半饱状态,此时吃药,相同剂量药物效果都差不多。但在中午的时候,有的人还没吃饭, 有的人吃过饭了,有的人喝了酒,结果酒精和药物起了反应,有的人喝了醋,醋又和药物起了另一种反应。显然,中午吃药会导致药物疗效的随机误差非常大。这种疗效的随机误差(而非疗效本身)随着时间的变化而变化,并呈一定分布的情况,必须用广义线性混合模型了。对于固定效应来说,参数的含义是,自变量每变化一个单位,应变量平均变化多少。而对于随机效应而言,参数是服从正态分布的一个随机变量,也就是说对于两个不同的自变量的值,对应变量的影响不一定是相同的。

    GLM的缺点 GLM模型可以支持数据的多种分布,但是要求数据是独立不相关的,在遗传评估时,很显然数据不能满足要求。

    可以使用

  • 相关阅读:
    leetcode 42, 58, 14(*)
    【Pandas总结】第一节 Pamdas 简介与Series,DataFrame的创建
    王道机试C++第 4 章 字符串:字符串内容续写几个小程序 Day30
    Linux 网络编程常用API
    镜像分层原理及容器层写时复制
    从宏观上理解计算机网络模型-坐在直升机上看网络
    【面试题精讲】说一说springboot加载配置文件优先级
    多级缓存之缓存同步
    JDK1.8新特性:函数式接口
    【图像分类】【深度学习】【Pytorch版本】VggNet模型算法详解
  • 原文地址:https://blog.csdn.net/Mrrunsen/article/details/126690892
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号