• 09-排序3 Insertion or Heap Sort(浙大数据结构)


    09-排序3 Insertion or Heap Sort

    分数 25

    作者 陈越

    单位 浙江大学

    According to Wikipedia:

    Insertion sort iterates, consuming one input element each repetition, and growing a sorted output list. Each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list, and inserts it there. It repeats until no input elements remain.

    Heap sort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. it involves the use of a heap data structure rather than a linear-time search to find the maximum.

    Now given the initial sequence of integers, together with a sequence which is a result of several iterations of some sorting method, can you tell which sorting method we are using?

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (≤100). Then in the next line, N integers are given as the initial sequence. The last line contains the partially sorted sequence of the N numbers. It is assumed that the target sequence is always ascending. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print in the first line either "Insertion Sort" or "Heap Sort" to indicate the method used to obtain the partial result. Then run this method for one more iteration and output in the second line the resulting sequence. It is guaranteed that the answer is unique for each test case. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    Sample Input 1:

    1. 10
    2. 3 1 2 8 7 5 9 4 6 0
    3. 1 2 3 7 8 5 9 4 6 0

    Sample Output 1:

    1. Insertion Sort
    2. 1 2 3 5 7 8 9 4 6 0

    Sample Input 2:

    1. 10
    2. 3 1 2 8 7 5 9 4 6 0
    3. 6 4 5 1 0 3 2 7 8 9

    Sample Output 2:

    1. Heap Sort
    2. 5 4 3 1 0 2 6 7 8 9

    1. #include <iostream>
    2. #include <algorithm>
    3. using namespace std;
    4. const int maxn = 110;
    5. int heap[maxn],a[maxn],res[maxn];
    6. int n;
    7. bool InsertSort(int *A,int num)
    8. {
    9. int flag=0;
    10. for(int i=2;i<=num;++i)
    11. {
    12. int temp=A[i],j;
    13. for(j=i;j>1 && A[j-1]>temp;--j)
    14. A[j]=A[j-1];
    15. A[j]=temp;
    16. if(flag==1)
    17. return true;
    18. for(int k=1;k<=num;++k)
    19. {
    20. if(A[k]==res[k])
    21. flag=1;
    22. else
    23. {
    24. flag=0;
    25. break;
    26. }
    27. }
    28. }
    29. return false;
    30. }
    31. void downAdjust(int low,int high)
    32. {
    33. int par=low,chi=2*par;
    34. while(chi<=high)
    35. {
    36. if(chi!=high && heap[chi+1]>heap[chi])
    37. ++chi;
    38. if(heap[chi]>heap[par])
    39. {
    40. swap(heap[chi],heap[par]);
    41. par=chi;
    42. chi*=2;
    43. }
    44. else
    45. break;
    46. }
    47. }
    48. void CreateHeap(int num)
    49. {
    50. for(int i=num/2;i>0;--i)
    51. downAdjust(i,num);
    52. }
    53. void HeapSort(int num)
    54. {
    55. CreateHeap(num);
    56. int flag=0;
    57. for(int i=num;i>0;--i)
    58. {
    59. swap(heap[1],heap[i]);
    60. downAdjust(1,i-1);
    61. if(flag==1)
    62. return;
    63. for(int j=1;j<=num;++j)
    64. {
    65. if(heap[j]==res[j])
    66. flag=1;
    67. else
    68. {
    69. flag=0;
    70. break;
    71. }
    72. }
    73. }
    74. }
    75. int main()
    76. {
    77. cin >> n;
    78. for(int i=1;i<=n;++i)
    79. {
    80. cin >> heap[i];
    81. a[i]=heap[i];
    82. }
    83. for(int i=1;i<=n;++i)
    84. cin >> res[i];
    85. if(InsertSort(a,n)==true)
    86. {
    87. puts("Insertion Sort");
    88. for(int i=1;i<=n;++i)
    89. {
    90. if(i==1)
    91. cout << a[i];
    92. else
    93. cout << ' ' << a[i];
    94. }
    95. cout << endl;
    96. }
    97. else
    98. {
    99. HeapSort(n);
    100. puts("Heap Sort");
    101. for(int i=1;i<=n;++i)
    102. {
    103. if(i==1)
    104. cout << heap[i];
    105. else
    106. cout << ' ' << heap[i];
    107. }
    108. cout << endl;
    109. }
    110. return 0;
    111. }

  • 相关阅读:
    Oracle - 多区间按权重取值逻辑
    Ubuntu 20.04 上安装和配置 neo4j
    Android:如何在 android constraintLayout 中设置视图的最大宽度?
    智能运维应用之道,告别企业数字化转型危机
    virtio代码分析(一)-qemu部分
    微信小程序接口请求/form-data/单文件、多文件上传
    DDD领域驱动贫血与富模型
    【S0062-ssh(CNN个性化推荐算法)-基于CNN的个性化音乐推荐检索系统的设计与实现-哔哩哔哩】 https://b23.tv/zTrbnPR
    小程序分享当前页面
    找不到vcruntime140_1.dll,无法继续执行代码怎么办?5个可以解决的方案分享
  • 原文地址:https://blog.csdn.net/qq_51825761/article/details/126676189