人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.
- 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.
- 回归和分类是常用神经网络处理的两类问题
- 感知机(Perceptron)是一个简单的线性二分类器, 它保存着输入权重, 根据输入和内置的函数计算输出.人工神经网络中的单个神经元即是感知机.
- 在前馈神经网络的预测过程中, 数据流从输入到输出单向流动, 不存在循环和返回的通道.
- 目前大多数神经网络模型都属于前馈神经网络, 在下文中我们将详细讨论前馈过程.
- 所谓全连接是指层A上任一神经元与临近层B上的任意神经元之间都存在连接.
- 反向传播(Back Propagation,BP)是误差反向传播的简称,这是一种用来训练人工神经网络的常见算法&