谷歌人工智能写作项目:神经网络伪原创
过拟合了,原因很多,解决方案也有很多写作猫。百度/谷歌搜索过拟合overfitting个人会优先尝试减小网络规模,比如层数、卷积滤波器个数、全连接层的单元数这些。
其他的比如Dropout,数据增强/扩充,正则,earlystop,batchnorm也都可以尝试。
BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hidelayer)和输出层(outputlayer)。人工神经网络就是模拟人思维的第二种方式。
这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
以太阳能为代表的新能源在近些年得到了广泛的研究和应用,特别是光伏发电技术。
光伏太阳能的核心组件是光伏电池组件,除了电池材料自身存在的缺陷,生产时对电池片的多次加工也可能导致电池片的损坏,如过焊片、黑斑片、隐裂片等缺陷问题,加上安装和使用过程中的机械损伤,都会影响组件的转化效率和使用寿命。
在实际应用中,更会对光伏发电系统自身的安全构成威胁。因此,研究光伏组件的缺陷检测显得尤为重要。
目前电池组件缺陷检测的技术主要有[1]:红外成像技术、光致发光成像技术、(ELectrofluorescence,EL)成像。
EL成像是用于光伏组件缺陷检测的非接触式成像技术,根据硅材料的电致发光原理进行检测。
给晶体硅电池组件加上正向偏压,组件会发出一定波长的光,电荷耦合器件图像传感器(CCD)可以捕捉到这个波长范围的光并在电脑上成像。
但电池组件存在缺陷会减弱其发光强度,所以可以根据EL图像中电池发光强度的不同来判断电池组件是否存在缺陷。
在以往的研究中,2012年TSIADM等[2]提出了利用独立分量分析(ICA)基图像识别缺陷的监督学习方法,该方法在80个太阳电池单元的测试