• 【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方


    偶然心血来潮,想要做一个音乐可视化的系列专题。这个专题的难度有点高,涉及面也比较广泛,相关的FFT和FHT等算法也相当复杂,不过还是打算从最简单的开始,实际动手做做试验,耐心尝试一下各种方案,逐步积累些有用的音乐频谱可视化的资料,也会争取成型一些实用好玩的音乐可视器项目。

    LED无限魔方的英文是LED Infinity Cube,还有一种称呼,叫做超级立方体,大概说的都是一种三维或多维镜像LED灯。正好手头有六片有机玻璃板,这里准备从小规格的开始尝试,先做一款10X10厘米的特别迷你型,感觉有点难度,试试看。
    在这里插入图片描述

    找到一张软镜子贴纸

    在这里插入图片描述
    立方体的底面,使用这个

    在这里插入图片描述

    超薄的玻璃贴膜

    在这里插入图片描述

    其余五个面,使用这个银灰膜

    在这里插入图片描述

    贴膜手艺有所提高

    在这里插入图片描述

    立方体的六个面备好了

    在这里插入图片描述

    声音模块,使用性价比更高的MAX4466声音传感器

    在这里插入图片描述

    MAX4466
    是微功率运算放大器,经过优化,可用作麦克风前置放大器。它们提供了优化的增益带宽产品与电源电流的理想组合,以及超小型封装中实现低电压工件环境。 MAX4466具有增益稳定特性,仅需24μA的电源电流即可提供200kHz的增益带宽。经过解压缩,可实现+5V/V的最小稳定增益,并提供600KHZ增益带宽。此外这些放大器具有轨到轨输出,高 AVOL ,以及出色的电源抑制和共模抑制比,适合在嘈杂环境中工作。广泛应用于蜂窝电话、数字复读装置、耳机、助听器、麦克风前置放大器、便携计算机和语音识别系统中。

    在这里插入图片描述

    MAX4466模块特点
    电源电压:+2.4V至+5.5V(可直接接STM/ARDUNIO/树莓派等开发板)
    电源抑制比:112dB
    共模抑制比:126dB
    AVOL:125dB(RL = 100kΩ) 轨到轨输出
    静态电源电流:24μA
    增益带宽:600kHz
    尺寸:20.8mm x 13.8mm x 7.5mm/0.8 x 0.5 x 0.3inch

    该模块在 Vcc 和接地引线上都包含铁氧体,以最大限度地减少电源噪声。如果与 MCU 一起使用,最好使用 2.4V – 5.5V 范围内可用的最安静的电源。在 Arduino 上,这通常是 3.3V 电源。输出是直流耦合的。当输出信号处于静止状态时,它将位于 Vcc/2。如果 Vcc 为 5V,则输出将为 2.5V。如果输出需要交流耦合,可以在输出引脚和它驱动的电路的输入之间增加一个100uF的电容。背面的小型单圈电位器可让您将增益从 25x 调整到 125x。逆时针旋转电位器会增加增益,而逆时针旋转会降低增益。

    在这里插入图片描述

    WS2812B灯带选用的是每米60灯黑底裸板

    在这里插入图片描述

    WS2812B灯带电原理图

    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述

    WS2812B是集控制电路和发光电路于一体的LED光源元件,其控制IC为WS2812B,发光元件是5050RGBLED,电压为5V,每个单位的峰值电流为60ma,灯带为三线制,VCC GND DIN分别为电源+、电源-、信号,当使用外部电源时,外部电源-需要与单片机的GND相连。

    在这里插入图片描述
    在这里插入图片描述

    定制的小木条到了,这活好像有点难度…

    在这里插入图片描述

    开始组装无限魔方

    在这里插入图片描述

    【花雕动手做】有趣好玩的音乐可视化系列小项目(22)–LED无限魔方
    项目程序之一:循环LED绿色LED快闪测试

    /*
      【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方
      项目程序之一:循环LED绿色LED快闪测试
    */
    
    #include 
    
    #define PIN 6
    #define MAX_LED 35
    
    #define ADD true
    #define SUB false
    
    int val = 0;
    boolean stat = ADD;
    
    Adafruit_NeoPixel strip = Adafruit_NeoPixel( MAX_LED, PIN, NEO_RGB + NEO_KHZ800 );
    
    void setup() {
      strip.begin();
      strip.show();
    }
    
    void loop() {
      uint8_t i, a = 0;
      uint32_t color = strip.Color(255, 0, 0);
      while (a < 36)
      {
        for (i = 0; i < 35; i++)
        {
          if (i == a) strip.setPixelColor(i, color);
          else strip.setPixelColor(i, 0);
        }
        strip.show();
        delay(100);
        a++;
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38

    测试已安装的一部分

    在这里插入图片描述

    实验场景图 动态图

    在这里插入图片描述

    许多失败,差点就放弃了,多方折腾后来勉强点亮…

    在这里插入图片描述

    【花雕动手做】有趣好玩的音乐可视化系列小项目(22)–LED无限魔方
    项目程序之二:NeoPixel Ring 绿色柱灯

    /*
      【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方
      项目程序之二:NeoPixel Ring 绿色柱灯
    */
    
    #include 
    #ifdef __AVR__
    #include  // Required for 16 MHz Adafruit Trinket
    #endif
    
    // Which pin on the Arduino is connected to the NeoPixels?
    #define PIN        6 // On Trinket or Gemma, suggest changing this to 1
    
    // How many NeoPixels are attached to the Arduino?
    #define NUMPIXELS 60 // Popular NeoPixel ring size
    
    // When setting up the NeoPixel library, we tell it how many pixels,
    // and which pin to use to send signals. Note that for older NeoPixel
    // strips you might need to change the third parameter -- see the
    // strandtest example for more information on possible values.
    Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
    
    #define DELAYVAL 500 // Time (in milliseconds) to pause between pixels
    
    void setup() {
      // These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
      // Any other board, you can remove this part (but no harm leaving it):
    #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
      clock_prescale_set(clock_div_1);
    #endif
      // END of Trinket-specific code.
      pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
    }
    
    void loop() {
      pixels.clear(); // Set all pixel colors to 'off'
    
      // The first NeoPixel in a strand is #0, second is 1, all the way up
      // to the count of pixels minus one.
      for (int i = 0; i < NUMPIXELS; i++) { // For each pixel...
    
        // pixels.Color() takes RGB values, from 0,0,0 up to 255,255,255
        // Here we're using a moderately bright green color:
        pixels.setPixelColor(i, pixels.Color(0, 250, 0));
    
        pixels.show();   // Send the updated pixel colors to the hardware.
    
        delay(100); // Pause before next pass through loop
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50

    实验的视频记录(1分02秒)

    https://v.youku.com/v_show/id_XNTkwMDM4ODA0NA==.html?spm=a2hcb.playlsit.page.1

    实验场景图 动态图

    在这里插入图片描述

    【花雕动手做】有趣好玩的音乐可视化系列小项目(22)–LED无限魔方
    项目程序之三:NeoPixel 测试程序

    /*
      【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方
      项目程序之三:NeoPixel 测试程序
    */
    
    #include 
    #ifdef __AVR__
    #include  // Required for 16 MHz Adafruit Trinket
    #endif
    
    // Which pin on the Arduino is connected to the NeoPixels?
    // On a Trinket or Gemma we suggest changing this to 1:
    #define LED_PIN    6
    
    // How many NeoPixels are attached to the Arduino?
    #define LED_COUNT 60
    
    // Declare our NeoPixel strip object:
    Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
    // Argument 1 = Number of pixels in NeoPixel strip
    // Argument 2 = Arduino pin number (most are valid)
    // Argument 3 = Pixel type flags, add together as needed:
    //   NEO_KHZ800  800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
    //   NEO_KHZ400  400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
    //   NEO_GRB     Pixels are wired for GRB bitstream (most NeoPixel products)
    //   NEO_RGB     Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
    //   NEO_RGBW    Pixels are wired for RGBW bitstream (NeoPixel RGBW products)
    
    
    // setup() function -- runs once at startup --------------------------------
    
    void setup() {
      // These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
      // Any other board, you can remove this part (but no harm leaving it):
    #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
      clock_prescale_set(clock_div_1);
    #endif
      // END of Trinket-specific code.
    
      strip.begin();           // INITIALIZE NeoPixel strip object (REQUIRED)
      strip.show();            // Turn OFF all pixels ASAP
      strip.setBrightness(50); // Set BRIGHTNESS to about 1/5 (max = 255)
    }
    
    
    // loop() function -- runs repeatedly as long as board is on ---------------
    
    void loop() {
      // Fill along the length of the strip in various colors...
      colorWipe(strip.Color(255,   0,   0), 50); // Red
      colorWipe(strip.Color(  0, 255,   0), 50); // Green
      colorWipe(strip.Color(  0,   0, 255), 50); // Blue
    
      // Do a theater marquee effect in various colors...
      theaterChase(strip.Color(127, 127, 127), 50); // White, half brightness
      theaterChase(strip.Color(127,   0,   0), 50); // Red, half brightness
      theaterChase(strip.Color(  0,   0, 127), 50); // Blue, half brightness
    
      rainbow(10);             // Flowing rainbow cycle along the whole strip
      theaterChaseRainbow(50); // Rainbow-enhanced theaterChase variant
    }
    
    
    // Some functions of our own for creating animated effects -----------------
    
    // Fill strip pixels one after another with a color. Strip is NOT cleared
    // first; anything there will be covered pixel by pixel. Pass in color
    // (as a single 'packed' 32-bit value, which you can get by calling
    // strip.Color(red, green, blue) as shown in the loop() function above),
    // and a delay time (in milliseconds) between pixels.
    void colorWipe(uint32_t color, int wait) {
      for (int i = 0; i < strip.numPixels(); i++) { // For each pixel in strip...
        strip.setPixelColor(i, color);         //  Set pixel's color (in RAM)
        strip.show();                          //  Update strip to match
        delay(wait);                           //  Pause for a moment
      }
    }
    
    // Theater-marquee-style chasing lights. Pass in a color (32-bit value,
    // a la strip.Color(r,g,b) as mentioned above), and a delay time (in ms)
    // between frames.
    void theaterChase(uint32_t color, int wait) {
      for (int a = 0; a < 10; a++) { // Repeat 10 times...
        for (int b = 0; b < 3; b++) { //  'b' counts from 0 to 2...
          strip.clear();         //   Set all pixels in RAM to 0 (off)
          // 'c' counts up from 'b' to end of strip in steps of 3...
          for (int c = b; c < strip.numPixels(); c += 3) {
            strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'
          }
          strip.show(); // Update strip with new contents
          delay(wait);  // Pause for a moment
        }
      }
    }
    
    // Rainbow cycle along whole strip. Pass delay time (in ms) between frames.
    void rainbow(int wait) {
      // Hue of first pixel runs 5 complete loops through the color wheel.
      // Color wheel has a range of 65536 but it's OK if we roll over, so
      // just count from 0 to 5*65536. Adding 256 to firstPixelHue each time
      // means we'll make 5*65536/256 = 1280 passes through this outer loop:
      for (long firstPixelHue = 0; firstPixelHue < 5 * 65536; firstPixelHue += 256) {
        for (int i = 0; i < strip.numPixels(); i++) { // For each pixel in strip...
          // Offset pixel hue by an amount to make one full revolution of the
          // color wheel (range of 65536) along the length of the strip
          // (strip.numPixels() steps):
          int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
          // strip.ColorHSV() can take 1 or 3 arguments: a hue (0 to 65535) or
          // optionally add saturation and value (brightness) (each 0 to 255).
          // Here we're using just the single-argument hue variant. The result
          // is passed through strip.gamma32() to provide 'truer' colors
          // before assigning to each pixel:
          strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
        }
        strip.show(); // Update strip with new contents
        delay(wait);  // Pause for a moment
      }
    }
    
    // Rainbow-enhanced theater marquee. Pass delay time (in ms) between frames.
    void theaterChaseRainbow(int wait) {
      int firstPixelHue = 0;     // First pixel starts at red (hue 0)
      for (int a = 0; a < 30; a++) { // Repeat 30 times...
        for (int b = 0; b < 3; b++) { //  'b' counts from 0 to 2...
          strip.clear();         //   Set all pixels in RAM to 0 (off)
          // 'c' counts up from 'b' to end of strip in increments of 3...
          for (int c = b; c < strip.numPixels(); c += 3) {
            // hue of pixel 'c' is offset by an amount to make one full
            // revolution of the color wheel (range 65536) along the length
            // of the strip (strip.numPixels() steps):
            int      hue   = firstPixelHue + c * 65536L / strip.numPixels();
            uint32_t color = strip.gamma32(strip.ColorHSV(hue)); // hue -> RGB
            strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'
          }
          strip.show();                // Update strip with new contents
          delay(wait);                 // Pause for a moment
          firstPixelHue += 65536 / 90; // One cycle of color wheel over 90 frames
        }
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140

    实验场景图 动态图

    在这里插入图片描述

    实验的视频记录(1分29秒)

    https://v.youku.com/v_show/id_XNTkwMDY1MjQ3Ng==.html?spm=a2hcb.playlsit.page.1

    【花雕动手做】有趣好玩的音乐可视化系列小项目(22)–LED无限魔方
    项目程序之四:音乐反应LED无限魔方
    模块接线:WS2812B接D6
    MAX4466 UNO
    VCC 5V
    GND GND
    OUT A0

    /*
      【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方
      项目程序之四:音乐反应LED无限魔方
      模块接线:WS2812B接D6
      MAX4466      UNO
      VCC          5V
      GND         GND
      OUT          A0
    */
    
    #include
    #define LED_PIN 6
    #define NUM_LEDS 60
    
    CRGB leds[NUM_LEDS];
    uint8_t hue = 0;
    int soundsensor = A0;
    
    void setup() {
      delay(2000);
      FastLED.addLeds<WS2812B, LED_PIN, GRB>(leds, NUM_LEDS);
      FastLED.setBrightness(155);
      pinMode(soundsensor, INPUT);
    }
    
    void loop() {
      int sensval = digitalRead(soundsensor);
    
      if (sensval == 1) {
        leds[0] = CRGB :: Red;
        fill_solid(leds, NUM_LEDS, CRGB :: Blue);
        rainbow_moving();
        FastLED.show();
        delay(10);
      }
      else {
        leds[0] = CRGB :: Black;
        fill_solid(leds, NUM_LEDS, CRGB :: Black);
        FastLED.show();
        delay(10);
      }
    }
    
    void rainbow_moving() {
      for (int i = 0; i < NUM_LEDS; i++) {
        leds[i] = CHSV(hue + (i * 10), 255, 255);
      }
      EVERY_N_MILLISECONDS(10) {
        hue++;
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51

    实验场景图 动态图

    在这里插入图片描述

    实验的视频记录(2分51秒)

    https://v.youku.com/v_show/id_XNTkwMDc0ODcxMg==.html?spm=a2hcb.playlsit.page.1

    【花雕动手做】有趣好玩的音乐可视化系列小项目(22)–LED无限魔方
    项目程序之五:多彩MegunoLink音乐节拍灯
    模块接线:WS2812B接D6
    MAX4466 UNO
    VCC 5V
    GND GND
    OUT A0

    /*
      【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方
      项目程序之五:多彩MegunoLink音乐节拍灯
      模块接线:WS2812B接D6
      MAX4466      UNO
      VCC          5V
      GND         GND
      OUT          A0
    */
    
    #include
    #include
    #include
    
    #define N_PIXELS  60
    #define MIC_PIN   A0
    #define LED_PIN   6
    #define NOISE 10
    #define TOP   (N_PIXELS+2)
    #define LED_TYPE  WS2811
    #define BRIGHTNESS  10
    #define COLOR_ORDER GRB
    
    CRGB leds[N_PIXELS];
    int lvl = 0, minLvl = 0, maxLvl = 10;
    
    ExponentialFilter<long> ADCFilter(5, 0);
    
    void setup() {
      FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, N_PIXELS).setCorrection(TypicalLEDStrip);
      FastLED.setBrightness(BRIGHTNESS);
    }
    
    void loop() {
      int n, height;
      n = analogRead(MIC_PIN);
      n = abs(1023 - n);
      n = (n <= NOISE) ? 0 : abs(n - NOISE);
      ADCFilter.Filter(n);
      lvl = ADCFilter.Current();
      //  Serial.print(n);
      //  Serial.print(" ");
      //  Serial.println(lvl);
      height = TOP * (lvl - minLvl) / (long)(maxLvl - minLvl);
      if (height < 0L) height = 0;
      else if (height > TOP) height = TOP;
      for (uint8_t i = 0; i < N_PIXELS; i++) {
        if (i >= height) leds[i] = CRGB(0, 0, 0);
        else leds[i] = Wheel( map( i, 0, N_PIXELS - 1, 30, 150 ) );
      }
      FastLED.show();
    }
    
    CRGB Wheel(byte WheelPos) {
      if (WheelPos < 85)
        return CRGB(WheelPos * 3, 255 - WheelPos * 3, 0);
      else if (WheelPos < 170) {
        WheelPos -= 85;
        return CRGB(255 - WheelPos * 3, 0, WheelPos * 3);
      } else {
        WheelPos -= 170;
        return CRGB(0, WheelPos * 3, 255 - WheelPos * 3);
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64

    实验的视频记录(4分50秒)

    https://v.youku.com/v_show/id_XNTkwMDgzNDUwMA==.html?spm=a2hcb.playlsit.page.1

    实验场景图

    在这里插入图片描述

    实验的视频记录

    https://v.youku.com/v_show/id_XNTkwMDgzNDc1Ng==.html?spm=a2hcb.playlsit.page.1

    参考LED序列

    在这里插入图片描述

    【花雕动手做】有趣好玩的音乐可视化系列小项目(22)–LED无限魔方
    项目程序之六:一个用 FastLED 编程的LED无限魔方体

    /*
      【花雕动手做】有趣好玩的音乐可视化系列小项目(22)--LED无限魔方
      项目程序之六:一个用 FastLED 编程的LED无限魔方体
    */
    
    #include 
    
    #define LED_PIN               6
    #define LEDS_PER_SEGMENT      5
    #define SEGMENTS              12
    #define BRIGHTNESS            200
    #define NUM_LEDS              LEDS_PER_SEGMENT * SEGMENTS
    #define NUM_LEDS_WITH_SAFETY  NUM_LEDS + 1
    
    CRGB source1[NUM_LEDS_WITH_SAFETY];
    CRGB source2[NUM_LEDS_WITH_SAFETY];
    CRGB output[NUM_LEDS_WITH_SAFETY];
    
    uint8_t blendAmount = 0;
    uint8_t patternCounter = 0;
    uint8_t source1Pattern = 0;
    uint8_t source2Pattern = 1;
    bool useSource1 = false;
    
    void setup() {
      FastLED.addLeds<WS2812B, LED_PIN, GRB>(output, NUM_LEDS_WITH_SAFETY);
      FastLED.setBrightness(BRIGHTNESS);
      Serial.begin(57600);
    }
    
    void loop() {
      EVERY_N_MILLISECONDS(10) {
        blend(source1, source2, output, NUM_LEDS, blendAmount);   //在两个源之间混合
    
        if (useSource1) {
          if (blendAmount < 255) blendAmount++;                   //混合“向上”到源 2
        } else {
          if (blendAmount > 0) blendAmount--;                     //将“向下”混合到源 1
        }
      }
    
      EVERY_N_SECONDS(8) {
        nextPattern();
      }
    
      runPattern(source1Pattern, source1);                  //同时运行两种模式
      runPattern(source2Pattern, source2);
      
      FastLED.show();
    }
    
    void nextPattern() {
      patternCounter = (patternCounter + 1) % 5;
    
      if (useSource1) source1Pattern = patternCounter;
      else source2Pattern = patternCounter;
    
      useSource1 = !useSource1;
    }
    
    void runPattern(uint8_t pattern, CRGB *LEDarray) {
      switch (pattern) {
        case 0:
          rainbowComet(LEDarray);//彩虹彗星
          break;
        case 1:
          prettyNoise(LEDarray);//漂亮噪声
          break;
        case 2:
          randomStar(LEDarray);//随机星
          break;
        case 3:
          fillRainbow(LEDarray);//填充彩虹
          break;
        case 4:
          pixels(LEDarray);// 像素
          break;
      }
    }
    
    uint8_t xyz(uint8_t x, uint8_t y, uint8_t z) {
    
    /*边缘的坐标从 0 到 5。每条边缘只有 5 个“真实”像素,
       * 所以只有 1 - 5 个 LED。缺少顶点(角)。
       * 如果请求这些顶点之一,则返回一个不显示的安全像素。
       * 我们对立方体内部的坐标也做同样的事情,即不在边缘上。
       */
    
      uint8_t lps = LEDS_PER_SEGMENT;
      uint8_t safePx = NUM_LEDS;
    
      if ((x == 0 || x == lps + 1) && (y == 0 || y == lps + 1) && (z == 0 || z == lps + 1)) return safePx;
    
      // z 方向边缘
      if (x == 0        && y == 0)        return (8 * lps)  - z;      // Seg 7
      if (x == 0        && y == lps + 1)  return (12 * lps) - z;      // Seg 11
      if (x == lps + 1  && y == 0)        return (3 * lps)  + z - 1;  // Seg 3
      if (x == lps + 1  && y == lps + 1)  return (9 * lps)  + z - 1;  // Seg 9
    
      // y 方向边
      if (x == 0        && z == 0)        return y - 1;               // Seg 0
      if (x == 0        && z == lps + 1)  return (7 * lps)  - y;      // Seg 6
      if (x == lps + 1  && z == 0)        return (3 * lps)  - y;      // Seg 2
      if (x == lps + 1  && z == lps + 1)  return (4 * lps)  + y - 1;  // Seg 4
    
      // x 方向边
      if (y == 0        && z == 0)        return (8 * lps)  + x - 1;  // Seg 8
      if (y == 0        && z == lps + 1)  return (11 * lps) - x;      // Seg 10
      if (y == lps + 1  && z == 0)        return lps        + x - 1;  // Seg 1
      if (y == lps + 1  && z == lps + 1)  return (6 * lps)  - x;      // Seg 5
    
      //如果以上都不是,我们的坐标无效
      return safePx;
    }
    
    //------------ Patterns below ------------//
    
    void pixels(CRGB *LEDarray) {
      static uint8_t pos = 0;
      static uint8_t a = 0;
      static uint8_t b = 0;
    
      //填充所有像素并将它们混合在一起
      for (int c = 0; c <= LEDS_PER_SEGMENT + 1; c++) {
        LEDarray[xyz(a,b,c)] = blend(LEDarray[xyz(a,b,c)], CRGB::Orange, 128);
        LEDarray[xyz(a,c,b)] = blend(LEDarray[xyz(a,c,b)], CRGB::Magenta, 128);
        LEDarray[xyz(c,a,b)] = blend(LEDarray[xyz(c,a,b)], CRGB::Blue, 128);
      }
    
      EVERY_N_MILLISECONDS(33) {    
        //围绕正方形移动的坐标
        if(pos < 15) a++;
        else if (pos <= (LEDS_PER_SEGMENT * 2) + 1) b++;
        else if (pos <= (LEDS_PER_SEGMENT * 3) + 2) a--;
        else b--;
    
         //再次开始我们到达正方形的尽头
        pos = (pos + 1) % ((LEDS_PER_SEGMENT + 1) * 4);
      }
    
      fadeToBlackBy(LEDarray, NUM_LEDS, 10);
      
    }
    
    void fillRainbow(CRGB *LEDarray) {
      static uint8_t pos = 0;
      
      uint8_t noise = inoise8(millis()/5);
      fill_rainbow(LEDarray, LEDS_PER_SEGMENT, noise, 10);
    
      //复制到其他段
      for (int i = 0; i < SEGMENTS; i++) {
        memmove8(&LEDarray[LEDS_PER_SEGMENT * i], &LEDarray[0], LEDS_PER_SEGMENT * sizeof(CRGB));
      }
    
       //垂直柱子上下移动的白点
      LEDarray[xyz(0, 0, LEDS_PER_SEGMENT - pos)] = CRGB::White;
      LEDarray[xyz(0, LEDS_PER_SEGMENT + 1, pos)] = CRGB::White;
      LEDarray[xyz(LEDS_PER_SEGMENT + 1, LEDS_PER_SEGMENT + 1, LEDS_PER_SEGMENT - pos)] = CRGB::White;
      LEDarray[xyz(LEDS_PER_SEGMENT + 1, 0, pos)] = CRGB::White;
    
      EVERY_N_MILLISECONDS(20) {
        pos = (pos + 1) % LEDS_PER_SEGMENT;
      }
    }
    
    void rainbowComet(CRGB *LEDarray) {
      static uint8_t easeOutVal = 0;
      static uint8_t easeInVal  = 0;
    
      //使图案出现在两个段上
      uint8_t ledsPerSegment = LEDS_PER_SEGMENT * 2;
      uint8_t segments = SEGMENTS / 2;
    
      easeOutVal = ease8InOutQuad(easeInVal);
      easeInVal++;
    
      uint8_t pos = lerp8by8(0, ledsPerSegment, easeOutVal);
      uint8_t hue =  map(pos, 0, ledsPerSegment, 0, 230);
      
      LEDarray[pos] = CHSV(hue, 255, 255);
      fadeToBlackBy(LEDarray, ledsPerSegment, 20);
    
      //复制到其他段
      for (int i = 0; i < segments; i++) {
        memmove8(&LEDarray[ledsPerSegment * i], &LEDarray[0], ledsPerSegment * sizeof(CRGB));
      }
    }
    
    void randomStar(CRGB *LEDarray) {
      EVERY_N_MILLISECONDS(75) {
        LEDarray[random16(0, NUM_LEDS)] = CRGB::LightGrey;
      }
    
    
      for (int i = 0; i < NUM_LEDS; i++) {
        
        // 亮度
        uint8_t bNoise = inoise8(i * 100, millis());
        bNoise = constrain(bNoise, 50, 200);
        bNoise = map(bNoise, 50, 200, 20, 80);
    
        // 色调
        uint8_t hNoise = inoise8(i * 20, millis() / 5);
        hNoise = constrain(hNoise, 50, 200);
        hNoise = map(hNoise, 50, 200, 160, 192);
        
        if (LEDarray[i].g == 0) {
          LEDarray[i] = CHSV(hNoise, 255, bNoise);
        }
      }
      
      fadeToBlackBy(LEDarray, NUM_LEDS, 5);//淡入黑色(LED 阵列,NUM LEDS,5 个)
    }
    
    
    void prettyNoise(CRGB *LEDarray) {
      fill_noise16 (LEDarray, NUM_LEDS, 1, 0, 100, 1, 1, 50, millis() / 3, 5);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219

    实验的视频记录(4分37秒)

    https://v.youku.com/v_show/id_XNTkwMjkxMjEwMA==.html?spm=a2hcb.playlsit.page.1

    实验场景图

    在这里插入图片描述
    实验的视频记录

    优酷:https://v.youku.com/v_show/id_XNTkwNjYzMjIyOA==.html?spm=a2hcb.playlsit.page.1

    B站:https://www.bilibili.com/video/BV1hN4y1P7U4/?vd_source=98c6b1fc23b2787403d97f8d3cc0b7e5

    实验场景图

    在这里插入图片描述

  • 相关阅读:
    nodejs基于微信小程序的图书销售商城系统 uniapp 小程序
    设计模式之观察者模式
    Openssl教程
    五、数据库
    【树莓派 Pico 基于Arduino IDE编程开发】
    TTY驱动分层思想
    LeetCode 0895. 最大频率栈
    RabbitMQ的安装和配置
    常见面试问题及回答——JAVA基础
    学习笔记——网络管理与运维——SNMP(SNMP原理)
  • 原文地址:https://blog.csdn.net/weixin_41659040/article/details/126639716