• Fisher信息与最大似然估计的渐进正态性(附有在Bernoulli分布上的计算)


    写在前面

    最大似然估计具有很多好的性质,包括相合性,同变性,渐进正态性等。本文主要关注的是渐进正态性。渐近正态性表明,估计量的极限分布是正态分布。而该正态分布的方差,与Fisher信息有着密不可分的关系。

    Fisher信息

    (定义)记分函数(Score Function):
    s ( X ; θ ) = ∂ l o g f ( X ; θ ) ∂ θ . s(X;\theta)=\frac{\partial logf(X;\theta)}{\partial \theta}. s(X;θ)=θlogf(X;θ).
    (定义)Fisher信息量(Fisher Information):
    I n ( θ ) = V ( ∑ i = 1 n s ( X i ; θ ) ) = ∑ i = 1 n V ( s ( X i ; θ ) )

    In(θ)=V(i=1ns(Xi;θ))=i=1nV(s(Xi;θ))" role="presentation">In(θ)=V(i=1ns(Xi;θ))=i=1nV(s(Xi;θ))
    In(θ)=V(i=1ns(Xi;θ))=i=1nV(s(Xi;θ))
    (定理)
    E θ [ s ( X ; θ ) ] = 0 \mathbb{E}_\theta[s(X;\theta)]=0 Eθ[s(X;θ)]=0
    证明:
    E θ [ s ( X ; θ ) ] = ∫ x ∂ l o g f ( x ; θ ) ∂ θ f ( x ; θ ) d x = ∫ x 1 f ( x ; θ ) ∂ f ( x ; θ ) ∂ θ f ( x ; θ ) d x = ∫ x ∂ f ( x ; θ ) ∂ θ d x = ∂ ∂ θ ∫ x f ( x ; θ ) d x = ∂ ∂ θ 1 = 0
    Eθ[s(X;θ)]=xlogf(x;θ)θf(x;θ)dx=x1f(x;θ)f(x;θ)θf(x;θ)dx=xf(x;θ)θdx=θxf(x;θ)dx=θ1=0" role="presentation" style="position: relative;">Eθ[s(X;θ)]=xlogf(x;θ)θf(x;θ)dx=x1f(x;θ)f(x;θ)θf(x;θ)dx=xf(x;θ)θdx=θxf(x;θ)dx=θ1=0
    Eθ[s(X;θ)]=xθlogf(x;θ)f(x;θ)dx=xf(x;θ)1θf(x;θ)f(x;θ)dx=xθf(x;θ)dx=θxf(x;θ)dx=θ1=0

    (定理)若 f ( X ; θ ) f(X;\theta) f(X;θ)二阶可导,则Fisher信息矩阵可以写为如下形式:
    I n ( θ ) = n I ( θ ) = − n ∫ x ∂ 2 l o g f ( x ; θ ) ∂ θ 2 f ( x ; θ ) d x I_n(\theta)=nI(\theta)=-n\int_x\frac{\partial^2logf(x;\theta)}{\partial\theta^2}f(x;\theta)dx In(θ)=nI(θ)=nxθ22logf(x;θ)f(x;θ)dx
    证明:
    V θ [ s ( X ; θ ) ] = E θ [ s ( X ; θ ) 2 ] − E θ [ s ( X ; θ ) ] 2 = E θ [ s ( X ; θ ) 2 ] = ∫ x ∂ l o g f ( x ; θ ) ∂ θ ∂ l o g f ( x ; θ ) ∂ θ f ( x ; θ ) d x ∫ x ∂ 2 l o g f ( x ; θ ) ∂ θ 2 f ( x ; θ ) d x = ∫ x ∂ ∂ θ ( 1 f ( x ; θ ) ∂ f ( x ; θ ) ∂ θ ) d x = ∫ x − ( ∂ f ( x ; θ ) ∂ θ ) 2 f ( x ; θ ) 2 + ( ∂ 2 f ( x ; θ ) ∂ θ 2 ) f ( x ; θ ) f ( x ; θ ) d x = ∫ x − ( ∂ f ( x ; θ ) ∂ θ ) 2 f ( x ; θ ) 2 d x = − ∫ x ∂ 2 l o g f ( x ; θ ) ∂ θ 2 f ( x ; θ ) d x
    Vθ[s(X;θ)]=Eθ[s(X;θ)2]Eθ[s(X;θ)]2=Eθ[s(X;θ)2]=xlogf(x;θ)θlogf(x;θ)θf(x;θ)dxx2logf(x;θ)θ2f(x;θ)dx=xθ(1f(x;θ)f(x;θ)θ)dx=x(f(x;θ)θ)2f(x;θ)2+(2f(x;θ)θ2)f(x;θ)f(x;θ)dx=x(f(x;θ)θ)2f(x;θ)2dx=x2logf(x;θ)θ2f(x;θ)dx" role="presentation" style="position: relative;">Vθ[s(X;θ)]=Eθ[s(X;θ)2]Eθ[s(X;θ)]2=Eθ[s(X;θ)2]=xlogf(x;θ)θlogf(x;θ)θf(x;θ)dxx2logf(x;θ)θ2f(x;θ)dx=xθ(1f(x;θ)f(x;θ)θ)dx=x(f(x;θ)θ)2f(x;θ)2+(2f(x;θ)θ2)f(x;θ)f(x;θ)dx=x(f(x;θ)θ)2f(x;θ)2dx=x2logf(x;θ)θ2f(x;θ)dx
    Vθ[s(X;θ)]xθ22logf(x;θ)f(x;θ)dx=Eθ[s(X;θ)2]Eθ[s(X;θ)]2=Eθ[s(X;θ)2]=xθlogf(x;θ)θlogf(x;θ)f(x;θ)dx=xθ(f(x;θ)1θf(x;θ))dx=xf(x;θ)2(θf(x;θ))2+f(x;θ)(θ22f(x;θ))f(x;θ)dx=xf(x;θ)2(θf(x;θ))2dx=xθ22logf(x;θ)f(x;θ)dx

    渐进正态性

    极大似然估计具有渐进正态性
    θ ^ n − θ s e → N ( 0 , 1 ) \frac{\hat{\theta}_n-\theta}{se}\rightarrow N(0,1) seθ^nθN(0,1)
    其中, s e ≈ 1 I n ( θ ) ≈ 1 I n ( θ ^ ) se\approx\sqrt{\frac{1}{I_n(\theta)}}\approx\sqrt{\frac{1}{I_n(\hat{\theta})}} seIn(θ)1 In(θ^)1
    证明从略,资料比较多。

    由此可以构建估计的置信区间。

    Bernoulli分布的最大似然估计及其方差

    X 1 , ⋯   , X n ∼ B e r n o u l l i ( p ) X_1, \cdots,X_n \sim Bernoulli(p) X1,,XnBernoulli(p),则其似然函数是 L ( p ) = ∏ i = 1 n p X i ( 1 − p ) 1 − X i L(p)=\prod_{i=1}^{n} p^{X_i}(1-p)^{1-X_i} L(p)=i=1npXi(1p)1Xi l o g L ( p ) = ∑ i n X i l o g p + ( 1 − X i ) l o g ( 1 − p ) logL(p)=\sum_{i}^{n}X_ilogp+(1-X_i)log(1-p) logL(p)=inXilogp+(1Xi)log(1p)
    最大化对数似然,就得到:
    d d x l o g L ( p ) = 0 ∑ i n X i 1 p − ( 1 − X i ) 1 1 − p = 0 p = 1 n ∑ i = 1 n X i

    ddxlogL(p)=0inXi1p(1Xi)11p=0p=1ni=1nXi" role="presentation" style="position: relative;">ddxlogL(p)=0inXi1p(1Xi)11p=0p=1ni=1nXi
    dxdlogL(p)=0inXip1(1Xi)1p1=0p=n1i=1nXi
    其记分函数是:
    ∂ l o g L ( p ) ∂ p = X p − 1 − X 1 − p \frac{\partial logL(p)}{\partial p}=\frac{X}{p}-\frac{1-X}{1-p} plogL(p)=pX1p1X
    I ( p ) = − E θ [ d ( X p − 1 − X 1 − p ) d p ] = 1 1 − p + 1 p = 1 p ( 1 − p ) I(p)=-E_\theta[\frac{d(\frac{X}{p}-\frac{1-X}{1-p})}{dp}]=\frac{1}{1-p}+\frac{1}{p}\\=\frac{1}{p(1-p)} I(p)=Eθ[dpd(pX1p1X)]=1p1+p1=p(1p)1
    I n ( p ) = n I ( p ) I_n(p)=nI(p) In(p)=nI(p),估计的方差 V ( p ) = n p ( 1 − p ) ≈ n p ^ ( 1 − p ^ ) V(p)=np(1-p) \approx n\hat{p}(1-\hat{p}) V(p)=np(1p)np^(1p^)

  • 相关阅读:
    SpringBootConfiguration注解的简介说明
    HIS系统源码,云HIS源码,二级医院信息管理系统源码,预约挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生工作站、护士工作站
    C#内映射lua表
    力扣94二叉树的中序遍历
    Mybatis-Plus 之 Wrapper
    create® 3入门教程-里程计
    Linux C应用编程-1-文件IO
    springboot中使用redis管理session
    PDF文档如何解密?3个软件值得收藏
    axios请求中以params或body形式传递参数的区别
  • 原文地址:https://blog.csdn.net/RSstudent/article/details/126640067