images, poses, bds, render_poses, i_test = load_llff_data(args.datadir, args.factor,
recenter=True, bd_factor=.75,
spherify=args.spherify)
从load_llff_data 中取出的pose 是一个(20,3,5)的list。20代表一共有20张image,3×5是每一个image 的pose matrix。
pose 蓝色部分包含rotation matrix 和 translation vector,就是平移和旋转,是一般意义上的位姿矩阵T (camera-to-world affine)。 第4列红色的部分,分别代表图像的高height,宽度width,和相机的焦距Focal:在train函数里面有如下代码:
hwf = poses[0,:3,-1] // 取出前三行最后一列元素(红色部分)
poses = poses[:,:3,:4] // 取出pose里的平移和旋转部分
....中间代码略去.......
H, W, focal = hwf // 分别赋予 Hieight、Width、focal
关于poses_bounds.npy 解释:这个文件存储这一个numpy 的数组:N×17,N 是图像的数量,17 个元素将会被转化为 3*5 的矩阵和两个深度值:视角 到 场景的最近和最远距离。
介绍代码中的一个参数:arg.white_bkgd:
在Blender 的数据集图像有四个通道RGBA,其中A表示的是alpha通道,一般情况下就是两个取值【0,1】,当alpha=0 表示该处的pixel是透明的;当alpha=1 表示该处的pixel是不透明的。 而 white_bkgd 这个参数就是负责将透明像素的部分转化为白色的背景,转化的代码部分如下:
if args.white_bkgd:
images = images[...,:3]*images[...,-1:] + (1.-images[...,-1:])
代码的解读:
images是Normalize到【0,1】之间的图像,当alpha=0(也就是 images[…,-1:] = 0 ),那么images的像素将设置为1(纯白色);当alpha=1的时候,那么images的像素的就是本来的RGB通道对应的颜色。
Input: layer = 0,Position Encoding 后的长度为 63 的vector
layer =9 时,将第8层的输出(channel=256)和 direction 进行Postion Encoding 之后(channel=27)进行concat
Output: 第8层的 density 为 alpha 的输出 和第10层的 rgb 3channel 的输出
netdepth = 8 , netwidth = 256 , input_ch = 63,是指position输入的维度(position encoding 之后的编码),skip = 4, 是因为在论文中 第5层出现了 skip connection.
model = NeRF(D=args.netdepth, W=args.netwidth,
input_ch=input_ch, output_ch=output_ch, skips=skips,
input_ch_views=input_ch_views, use_viewdirs=args.use_viewdirs).to(device)
Nerf 的 网络构建代码如下:
class NeRF(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):
"""
"""
super(NeRF, self).__init__()
self.D = D
self.W = W
## Position Encoding之后的 位置vector通道数(63)
self.input_ch = input_ch
## Position Encoding之后的 direction的vector通道数(27)
self.input_ch_views = input_ch_views
self.skips = skips ## 在第4层有跳跃连接
self.use_viewdirs = use_viewdirs
## 前8层的MLP实现:输入为63,输出为 256
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
### 构建了第9层的输入为 第8层的输出 和 direction 进行concat,输出为128 维
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
if use_viewdirs:
self.feature_linear = nn.Linear(W, W) # 第9层 输出256维的向量
self.alpha_linear = nn.Linear(W, 1) # 第9层输出 density alpha(1维)
self.rgb_linear = nn.Linear(W//2, 3)
else:
self.output_linear = nn.Linear(W, output_ch)
def forward(self, x):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.use_viewdirs:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1) #第9层concat direction 向量
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = self.rgb_linear(h) ## 输出rgb 3维度向量
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return outputs