总皂苷的作用:具有抑制血小板聚集和增加脑血流量的作用。用三七总皂苷对高脂血症患者进行降脂抗栓作用的临床研究。结果治疗后有明显抗血小板聚集和降纤作用,临床疗效及血脂、血液流变的改善均优于对照组。
研究表明三七总皂苷对高脂血症具有明显的预防和治疗作用。
三七总皂苷能明显缩短出血和凝血时间,促进人体红细胞分裂、生长并且具有明显补血功效,还能显著提高巨噬细胞吞噬率,提高血液中淋巴细胞比值,具有活血化瘀、祛瘀生新的疗效,主要用于心脑血管疾病的治疗。
扩展资料:用三七总皂苷治疗高血压,治疗20天后,能明显降低增高的血压还能明显减慢心率,结果显示三七总皂苷能显著降低高血压患者MDA,明显升高SOD,增加红细胞变形能力,降低红细胞的聚集性。
三七总皂苷主要用应用心脑血管疾病类的药品、保健品等如“血塞通”“复方丹参滴丸”。
三七总皂苷含有人参皂苷Rb1、Rb2、Rc、Rd、Re、Rf、Rg1、Rg2、Rh1,三七皂苷R1、R2、R3、R4、R6等20多种皂甙成分。其中以人参皂苷Rb1,Rg1,三七皂苷R1含量最高。
三七中三七总皂苷的提取方法有很多种。中国药典应用的方法是冷浸法,但较为费时;还有一些比较传统的提取方法如水煎醇沉法、渗漉法都是目前提取三七总皂苷的主要方法。
随着现代科学技术的发展,一些其他领域的技术也应用到三七的提取中,如超声波、微波提取、大孔树脂吸附技术、罐组逆流提取技术以及运用神经网络模型进行优化提取工艺。
参考资料来源:百度百科——三七总皂苷参考资料来源:百度百科——人参总皂苷。
谷歌人工智能写作项目:神经网络伪原创
小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。
它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。 即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。
它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。
“小波神经网络”的应用:1、在影像处理方面,可以用于影像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高解析度等。2、在信号分析中的应用也十分广泛。
它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等。3、在工程技术等方面的应用。
包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面。扩展资料:小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。
其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。
小波神经网络具有以下特点:首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。
优化神经网络结构。如BP神经网络改变隐层神经元数量、训练算法等;使用其他神经网络。如Elman神经网络考虑了前一时刻的输出,比较适合用于预测,预测效果往往更好。
RBF神经网络的训练速度很快,训练效果也很好。改进的神经网络算法。例如BP神经网络增加动量项、自适应学习率等措施,防止陷入局部极小影响预测效果。组合神经网络。
取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较灵活,可以和许多算法融合。全面考虑影响因素。
未来的预测值受许多因素影响,所以应该在基于历史数据的基础上,充分考虑各种因素,考虑得越周全,预知信息越多,预测效果一般更好。
神经网络原理及应用1.什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人类的神经网络2.神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比较轻松地实现非线性映射过程,具有大规模的计算能力神经网络的本质:神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。
3.生物神经元结构4.神经元结构模型xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值判断xjwij是否大于阈值θi5.什么是阈值?
临界值。神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。
6.几种代表性的网络模型单层前向神经网络——线性网络阶跃网络多层前向神经网络(反推学习规则即BP神经网络)Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等7.神经网络能干什么?
运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。
虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。8.神经网络应用。
人工神经元是人工神经网络的基本处理单元,而人工智能的一个重要组成部分又是人工神经网络。人工神经网络是模拟生物神经元系统的数学模型,接受信息主要是通过神经元来进行的。
首先,人工神经元利用连接强度将产生的信号扩大;然后,接收到所有与之相连的神经元输出的加权累积;最后,将神经元与加权总和一一比较,当比阈值大时,则激活人工神经元,信号被输送至与它连接的上一层的神经元,反之则不行。
人工神经网络的一个重要模型就是反向传播模型(Back-PropagationModel)(简称BP模型)。
对于一个拥有n个输入节点、m个输出节点的反向传播网络,可将输入到输出的关系看作n维空间到m维空间的映射。由于网络中含有大量非线性节点,所以可具有高度非线性。
(一)神经网络评价法的步骤利用神经网络对复垦潜力进行评价的目的就是对某个指标的输入产生一个预期的评价结果,在此过程中需要对网络的连接弧权值进行不断的调整。(1)初始化所有连接弧的权值。
为了保证网络不会出现饱和及反常的情况,一般将其设置为较小的随机数。(2)在网络中输入一组训练数据,并对网络的输出值进行计算。
(3)对期望值与输出值之间的偏差进行计算,再从输出层逆向计算到第一隐含层,调整各条弧的权值,使其往减少该偏差的方向发展。
(4)重复以上几个步骤,对训练集中的各组训练数据反复计算,直至二者的偏差达到能够被认可的程度为止。(二)人工神经网络模型的建立(1)确定输入层个数。
根据评价对象的实际情况,输入层的个数就是所选择的评价指标数。(2)确定隐含层数。
通常最为理想的神经网络只具有一个隐含层,输入的信号能够被隐含节点分离,然后组合成新的向量,其运算快速,可让复杂的事物简单化,减少不必要的麻烦。(3)确定隐含层节点数。
按照经验公式:灾害损毁土地复垦式中:j——隐含层的个数;n——输入层的个数;m——输出层的个数。人工神经网络模型结构如图5-2。
图5-2人工神经网络结构图(据周丽晖,2004)(三)人工神经网络的计算输入被评价对象的指标信息(X1,X2,X3,…,Xn),计算实际输出值Yj。
灾害损毁土地复垦比较已知输出与计算输出,修改K层节点的权值和阈值。灾害损毁土地复垦式中:wij——K-1层结点j的连接权值和阈值;η——系数(0<η<1);Xi——结点i的输出。
输出结果:Cj=yj(1-yj)(dj-yj)(5-21)式中:yj——结点j的实际输出值;dj——结点j的期望输出值。
因为无法对隐含结点的输出进行比较,可推算出:灾害损毁土地复垦式中:Xj——结点j的实际输出值。
它是一个轮番代替的过程,每次的迭代都将W值调整,这样经过反复更替,直到计算输出值与期望输出值的偏差在允许值范围内才能停止。
利用人工神经网络法对复垦潜力进行评价,实际上就是将土地复垦影响评价因子与复垦潜力之间的映射关系建立起来。
只要选择的网络结构合适,利用人工神经网络函数的逼近性,就能无限接近上述映射关系,所以采用人工神经网络法进行灾毁土地复垦潜力评价是适宜的。
(四)人工神经网络方法的优缺点人工神经网络方法与其他方法相比具有如下优点:(1)它是利用最优训练原则进行重复计算,不停地调试神经网络结构,直至得到一个相对稳定的结果。
所以,采取此方法进行复垦潜力评价可以消除很多人为主观因素,保证了复垦潜力评价结果的真实性和客观性。(2)得到的评价结果误差相对较小,通过反复迭代减少系统误差,可满足任何精度要求。
(3)动态性好,通过增加参比样本的数量和随着时间不断推移,能够实现动态追踪比较和更深层次的学习。
(4)它以非线性函数为基础,与复杂的非线性动态经济系统更贴近,能够更加真实、更为准确地反映出灾毁土地复垦潜力,比传统评价方法更适用。
但是人工神经网络也存在一定的不足:(1)人工神经网络算法是采取最优化算法,通过迭代计算对连接各神经元之间的权值不断地调整,直到达到全局最优化。
但误差曲面相当复杂,在计算过程中一不小心就会使神经网络陷入局部最小点。
(2)误差通过输出层逆向传播,隐含层越多,逆向传播偏差在接近输入层时就越不准确,评价效率在一定程度上也受到影响,收敛速度不及时的情况就容易出现,从而造成个别区域的复垦潜力评价结果出现偏离。