Spring cloud 流应用程序启动器是基于 Spring Boot 的 Spring 集成应用程序,提供与外部系统的集成。Spring cloud Task,一个生命周期短暂的微服务框架,用于快速构建执行有限数据处理的应用程序。
微服务架构是一种架构模式或者说是一种架构风格,它提倡将单一应用程序划分为一组小的服务,每个服务运行在其独立的自己的进程中,服务之间相互协调、互相配合,为用户提供最终价值。
服务之间采用轻量级的通信机制互相沟通(通常是基于HTTP的RESTful API),每个服务都围绕着具体的业务进行构建,并且能够被独立的构建在生产环境、类生产环境等。
另外,应避免统一的、集中式的服务管理机制,对具体的一个服务而言,应根据业务上下文,选择合适的语言、工具对其进行构建,可以有一个非常轻量级的集中式管理来协调这些服务,可以使用不同的语言来编写服务,也可以使用不同的数据存储。
通俗地来讲:
微服务就是一个独立的职责,单一的服务应用程序。在 intellij idea 工具里面就是用maven开发的一个个独立的module,具体就是使用springboot 开发的一个小的模块,处理单一专业的业务逻辑,一个模块只做一个事情。
微服务强调的是服务大小,关注的是某一个点,具体解决某一个问题/落地对应的一个服务应用,可以看做是idea 里面一个 module。
使用 Spring Boot 开发分布式微服务时,我们面临以下问题
同步通信:dobbo通过 RPC 远程过程调用、springcloud通过 REST 接口json调用等。
异步:消息队列,如:RabbitMq、ActiveM、Kafka等消息队列。
熔断机制是应对服务雪崩效应的一种微服务链路保护机制。
当某个微服务不可用或者响应时间太长时,会进行服务降级,进而熔断该节点微服务的调用,快速返回“错误”的响应信息。
当检测到该节点微服务调用响应正常后恢复调用链路。
服务降级,一般是从整体负荷考虑。就是当某个服务熔断之后,服务器将不再被调用,此时客户端可以自己准备一个本地的fallback回调,返回一个缺省值。这样做,虽然水平下降,但好歹可用,比直接挂掉强。
Hystrix相关注解:
Sentinel 和 Hystrix 的区别
两者的原则是一致的, 都是当一个资源出现问题时, 让其快速失败, 不要波及到其它服务但是在限制的手段上, 确采取了完全不一样的方法:
- Hystrix 采用的是线程池隔离的方式, 优点是做到了资源之间的隔离, 缺点是增加了线程切换的成本。
- Sentinel 采用的是通过并发线程的数量和响应时间来对资源做限制。
Zookeeper保证了CP,Eureka保证了AP。
分布式理论:
A:高可用
C:一致性
P:分区容错性
1.当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的信息,但不能容忍直接down掉不可用。
也就是说,服务注册功能对高可用性要求比较高,但zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新选leader。
问题在于,选取leader时间过长:30 ~ 120s,且选取期间zk集群都不可用,这样就会导致选取期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够恢复,但是漫长的选取时间导致的注册长期不可用是不能容忍的。
2.Eureka保证了可用性,Eureka各个节点是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点仍然可以提供注册和查询服务。而Eureka的客户端向某个Eureka注册或发现时发生连接失败,则会自动切换到其他节点,只要有一台Eureka还在,就能保证注册服务可用,只是查到的信息可能不是最新的。
除此之外,Eureka还有自我保护机制,如果在15分钟内超过85%的节点没有正常的心跳,那么Eureka就认为客户端与注册中心发生了网络故障,此时会出现以下几种情况:
因此,Eureka可以很好地应对因网络故障导致部分节点失去联系的情况,而不会像Zookeeper那样使整个微服务瘫痪
SpringBoot专注于快速方便得开发单个个体微服务。
SpringCloud是关注全局的微服务协调整理治理框架,它将SpringBoot开发的一个个单体微服务整合并管理起来,
为各个微服务之间提供,配置管理、服务发现、断路器、路由、微代理、事件总线、全局锁、决策竞选、分布式会话等等集成服务
SpringBoot可以离开SpringCloud独立使用开发项目, 但是springCloud离不开SpringBoot ,属于依赖的关系。
SpringBoot专注于快速、方便得开发单个微服务个体,SpringCloud关注全局的服务治理框架。
负载平衡又叫作NAT负载均衡,在不同的领域有不同的概念。其基本概念是为了减轻某个或某些实体的负载,将任务通过某种策略分配到多个实体上去,实现负载在不同实体间的平衡。
在计算中,负载平衡可以改善跨计算机,计算机集群,网络链接,中央处理单元或磁盘驱动器等多种计算资源的工作负载分布。
负载平衡旨在优化资源使用,最大化吞吐量,最小化响应时间并避免任何单一资源的过载。使用多个组件进行负载平衡而不是单个组件可能会通过冗余来提高可靠性和可用性。负载平衡通常涉及专用软件或硬件,例如多层交换机或域名系统服务器进程。
负载均衡在系统架构中是一个非常重要,并且是不得不去实施的内容。因为负载均衡是对系统的高可用、网络压力的缓解和处理能力扩容的重要手段之一。我们通常所说的负载均衡都指的是服务端负载均衡,其中分为硬件负载均衡和软件负载均衡。硬件负载均衡主要通过在服务器节点之间安装专门用于负载均衡的设备,比如F5等;而软件负载均衡则是通过在服务器上安装一些具有均衡负载功能或模块的软件来完成请求分发工作,比如Nginx等。
硬件负载均衡的设备或是软件负载均衡的软件模块都会维护一个下挂可用的服务端清单,通过心跳检测来剔除故障的服务端节点以保证清单中都是可以正常访问的服务端节点。
当客户端发送请求到负载均衡设备的时候,该设备按某种算法(比如线性轮询、按权重负载、按流量负载等)从维护的可用服务端清单中取出一台服务端的地址,然后进行转发。
而客户端负载均衡和服务端负载均衡最大的不同点在于上面所提到的服务清单所存储的位置。
客户端负载均衡中,所有客户端节点都维护着自己要访问的服务端清单,而这些服务端的清单来自于服务注册中心,比如ureka服务端,nacos,zookeeper等。
同服务端负载均衡的架构类似,在客户端负载均衡中也需要心跳去维护服务端清单的健康性,只是这个步骤需要与服务注册中心配合完成。
在Spring Cloud实现的服务治理框架中,默认会创建针对各个服务治理框架的 Ribbon自动化整合配置。
Hystrix是一个延迟和容错库,旨在隔离远程系统,服务和第三方库的访问点,当出现故障是不可避免的故障时,停止级联故障并在复杂的分布式系统中实现弹性。
通常对于使用微服务架构开发的系统,涉及到许多微服务。这些微服务彼此协作。
思考一下微服务:
假设如果上图中的微服务9失败了,那么使用传统方法我们将传播一个异常。但这仍然会导致整个系统崩溃。
随着微服务数量的增加,这个问题变得更加复杂。微服务的数量可以高达1000.这是hystrix出现的地方 我们将使用Hystrix在这种情况下的Fallback方法功能。
我们有两个服务employee-consumer使用由employee-consumer公开的服务。简化图如下所示:
现在假设由于某种原因,employee-producer公开的服务会抛出异常。我们在这种情况下使用Hystrix定义了一个回退方法。这种后备方法应该具有与公开服务相同的返回类型。如果暴露服务中出现异常,则回退方法将返回一些值。
由于某些原因,employee-consumer公开服务会引发异常。在这种情况下使用Hystrix我们定义了一个回退方法。如果在公开服务中发生异常,则回退方法返回一些默认值。
如果firstPage method() 中的异常继续发生,则Hystrix电路将中断,并且员工使用者将一起跳过firtsPage方法,并直接调用回退方法。
断路器的目的是给第一页方法或第一页方法可能调用的其他方法留出时间,并导致异常恢复。可能发生的情况是,在负载较小的情况下,导致异常的问题有更好的恢复机会 。
首先需要有处理网络连接通讯的模块,负责连接建立、管理和消息的传输。
其次需要有编解码的模块,因为网络通讯都是传输的字节码,需要将我们使用的对象序列化和反序列化。
剩下的就是客户端和服务器端的部分,服务器端暴露要开放的服务接口,客户调用服 务接口的一个代理实现,这个代理实现负责收集数据、编码并传输给服务器然后等待结果 返回。
当Eureka Server 节点在短时间内丢失了过多实例的连接时(比如网络故障或频繁启动关闭客户端)节点会进入自我保护模式,保护注册信息,不再删除注册数据,故障恢复时,自动退出自我保护模式。
Spring Cloud Ribbon是一个基于HTTP和TCP的客户端负载均衡工具,可以很好地控制htt和tcp的一些行为,它基于NetflixRibbon实现。
通过Spring Cloud 的封装,可以让我们轻松地将面向服务的REST模板请求自动转换成客户端负载均衡的服务调用。Spring Cloud Ribbon虽然只是一个工具类框架,它不像服务注册中心、配置中心、API 网关那样需要独立部署,但是它几乎存在于每一个Spring Cloud构建的微服务和基础设施中。因为微服务间的调用,API网关的请求转发等内容,实际上都是通过Ribbon来实现的。
Feign 是受到 Retrofit,JAXRS-2.0 和 WebSocket 启发的 java 客户端联编程序。
Feign 的第一个目标是将约束分母的复杂性统一到 http apis,而不考虑其稳定性。
特点:
使用方式
1.Ribbon和fegin都是调用其他服务的,但方式不同。
2.启动类注解不同,Ribbon是@RibbonClient feign的是@EnableFeignClients
3.服务指定的位置不同,Ribbon是在@RibbonClient注解上声明,Feign则是在定义抽象方法的接口中使用@FeignClient声明。
4.调用方式不同,Ribbon需要自己构建http请求,模拟http请求。
服务发布时,指定对应的服务名,将服务注册到 注册中心(Eureka 、Zookeeper)。
注册中心加@EnableEurekaServer,服务用@EnableDiscoveryClient,然后用ribbon或feign进行服务直接的调用发现。
Spring Cloud Eureka,使用Netflix Eureka来实现服务注册与发现,它既包含了服务端组件,也包含了客户端组件,并且服务端与客户端均采用Java编写,所以Eureka主要适用于通过Java实现的分布式系统,或是与JVM兼容语言构建的系统。
Eureka服务端,我们也称为服务注册中心。它同其他服务注册中心一样,支持高可用配置。它依托于强一致性提供良好的服务实例可用性,可以应对多种不同的故障场景。
如果 Eureka 以集群模式部署,当集群中有分片出现故障时,那么 Eureka就转入自我保护模式。它允许在分片故障期间继续提供服务的发现和注册,当故障分片恢复运行时,集群中的其他分片会把它们的状态再次同步回来。
Netflix 推荐每个可用的区域运行一个Eureka服务端,通过它来形成集群。不同可用区域的服务注册中心通过异步模式互相复制各自的状态,这意味着在任意给定的时间点每个实例关于所有服务的状态是有细微差别的。
Eureka客户端,主要处理服务的注册与发现。客户端服务通过注解和参数配置的方式,嵌入在客户端应用程序的代码中,在应用程序运行时Eureka 客户端向注册中心注册自身提供的服务并周期性地发送心跳来更新它的服务租约。同时,它也能从服务端查询当前注册的服务信息并把它们缓存到本地并周期性地刷新服务状态。
当我们启动服务消费者的时候,它会发送一个REST请求给服务注册中心,来获取上面注册的服务清单。
为了性能考虑,Eureka Server会维护一份只读的服务清单来返回给客户端,同时该缓存清单会每隔30秒更新一次。
获取服务是服务消费者的基础,所以必须确保eureka.client.fetch-registry=true参数没有被修改成false,该值默认为true。若希望修改缓存清单的更新时间,可以通过eureka.client.registry-fetch-interval-seconds=30参数进行修改,该参数默认值为30,单位为秒。
服务消费者在获取服务清单后,通过服务名可以获得具体提供服务的实例名和该实例的元数据信息。因为有这些服务实例的详细信息,所以客户端可以根据自己的需要决定具体调用哪个实例,在Ribbon中会默认采用轮询的方式进行调用,从而实现客户端的负载均衡。
对于访问实例的选择,Eureka 中有Region和Zone 的概念,一个Region中可以包含多个Zone,每个服务客户端需要被注册到一个Zone中,所以每个客户端对应一个Region和一个Zone。
在进行服务调用的时候,优先访问同处一个Zone中的服务提供方,若访问不到,就访问其他的Zone。
在系统运行过程中必然会面临关闭或重启服务的某个实例的情况,在服务关闭期间,我们自然不希望客户端会继续调用关闭了的实例。所以在客户端程序中,当服务实例进行正常的关闭操作时,它会触发一个服务下线的REST请求给Eureka Server,告诉服务注册中心:“我要下线了”。服务端在接收到请求之后,将该服务状态置为下线(DOWN),并把该下线事件传播出去。
有些时候,我们的服务实例并不一定会正常下线,可能由于内存溢出、网络故障等原因使得服务不能正常工作(注意:我们的kill命令属于非正常下线),而服务注册中心并未收到“服务下线”的请求。
为了从服务列表中将这些无法提供服务的实例剔除,Eureka Server在启动的时候会创建一个定时任务,默认每隔一段时间(默认为60秒)将当前清单中超时(默认为90秒)没有续约的服务剔除出去。
Eureka Server在运行期间,会统计心跳失败的比例在15分钟之内是否低于85%,如果出现低于的情况(在单机调试的时候很容易满足,实际在生产环境上通常是由于网络不稳定导致),EurekaServer会将当前的实例注册信息保护起来,让这些实例不会过期,尽可能保护这些注册信息。
但是,在这段保护期间内实例若出现问题,那么客户端很容易拿到实际已经不存在的服务实例,会出现调用失败的情况,所以客户端必须要有容错机制,比如可以使用请求重试、断路器等机制。
由于本地调试很容易触发注册中心的保护机制,这会使得注册中心维护的服务实例不那么准确。所以,我们在本地进行开发的时候,可以使用eureka.server.enable-self-preservation=false参数来关闭保护机制,以确保注册中心可以将不可用的实例正确剔除。
当Eureka Server 节点在短时间内丢失了过多实例的连接时(比如网络故障或频繁启动关闭客户端)节点会进入自我保护模式,保护注册信息,不再删除注册数据,故障恢复时,自动退出自我保护模式。
spring cloud bus 将分布式的节点用轻量的消息代理连接起来,它可以用于广播配置文件的更改或者服务直接的通讯,也可用于监控。如果修改了配置文件,发送一次请求,所有的客户端便会重新读取配置文件。
在微服务架构的系统中,我们通常会使用轻量级的消息代理来构建一个共用的消息主题让系统中所有微服务实例都连接上来,由于该主题中产生的消息会被所有实例监听和消费,所以我们称它为消息总线。
在总线上的各个实例都可以方便地广播一些需要让其他连接在该主题上的实例都知道的消息,例如配置信息的变更或者其他一些管理操作等。
由于消息总线在微服务架构系统中被广泛使用,所以它同配置中心一样,几乎是微服务架构中的必备组件。通过使用Spring Cloud Bus,可以非常容易地搭建起消息总线,同时实现了一些消息总线中的常用功能,比如,配合Spring Cloud Config 实现微服务应用配置信息的动态更新等。
在分布式系统中,由于服务数量巨多,为了方便服务配置文件统一管理,实时更新,所以需要分布式配置中心组件。在Spring Cloud中,有分布式配置中心组件Spring Cloud Config,它支持配置服务放在配置服务的内存中(即本地),也支持放在远程Git仓库中,它分为服务端与客户端两个部分:
使用方式:
添加pom依赖
配置文件添加相关配置
在yml文件中添加:
启动类添加注解@EnableConfigServer
通过SpringCloudBus实现配置的动态修改和刷新