画一个二维的坐标图,推公式即可。
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- int main()
- {
- int T; scanf("%d", &T);
- while(T--)
- {
- double k, x;
- scanf("%lf%lf", &k, &x);
- if(k == x) puts("0.50");
- else if(k < x) printf("%.2f\n", 0.5 * (x * x - k * k) / (x * x) + 0.5);
- else if(x >= k - x) printf("%.2f\n", 0.5 * pow(2 * x - k, 2) / (x * x));
- else puts("0.00");
- }
- return 0;
- }
期望dp入门题
概率dp一般是设已经算了多少的情况下,剩余的期望。这样的话结果就是0,然后递推到初始状态。方程可能会原地踏步,自己推自己,这个时候就需要移项。
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 1e3 + 10;
- double dp[N][N];
- int n, s;
-
- int main()
- {
- scanf("%d%d", &n, &s);
- for(int i = n; i >= 0; i--) //逆推到0
- for(int j = s; j >= 0; j--)
- {
- if(i == n && j == s) continue; //注意这里,不加的话会除以0
- double a = 1.0 * i / n, b = 1.0 * j / s;
- dp[i][j] = 1 / (1 - a * b) * (a * b + (1 - a) * b * (1 + dp[i + 1][j])
- + a * (1 - b) * (1 + dp[i][j + 1]) +
- (1 - a) * (1 - b) * (1 + dp[i + 1][j + 1]));
- }
- printf("%.10f\n", dp[0][0]);
-
- return 0;
- }
期望dp一般倒推比较好想,正推也行,但会比较复杂。倒推指的是从当前状态到结束状态的期望,而不是像其他dp那样从初始状态到当前状态的期望
dp[i]表示从i位置走到n位置的期望分数
那么dp[n] = a[n]
dp[i] = a[i] + dp[j] / len
j是所有能达到的点,len是能到达的点的个数
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 1e2 + 10;
- double dp[N], a[N];
- int n;
-
- int main()
- {
- scanf("%d", &n);
- _for(i, 1, n) scanf("%lf", &a[i]);
-
- dp[n] = a[n];
- for(int i = n - 1; i >= 1; i--)
- {
- dp[i] = a[i];
- int len = min(i + 6, n) - i;
- _for(j, i + 1, i + len)
- dp[i] += dp[j] / len;
- }
- printf("%.10f\n", dp[1]);
-
- return 0;
- }
这题的难点在于dp方程里面有一个f[0],这个f[0]是我们所求的,也是一个常数
处理的技巧就是设f[i] = A[i]f[0] + B[i],代入dp方程,得到A和B的递推式子
注意题目求的是大于n的,也就是f[n+1]=0,所以要从A[n],B[n]开始求。
递推求得A[0],B[0],由f[0] = A[0]f[0] + B[0]解出f[0]即可。
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 600;
- int n, a, b, c, k1, k2, k3, K;
- double p[20], A[N], B[N];
-
- int main()
- {
- scanf("%d%d%d%d%d%d%d", &n, &k1, &k2, &k3, &a, &b, &c);
- _for(i, 1, k1)
- _for(j, 1, k2)
- _for(k, 1, k3)
- {
- if(i == a && j == b && k == c) p[0]++;
- else p[i + j + k]++;
- }
- K = k1 + k2 + k3;
- _for(i, 0, K) p[i] /= k1 * k2 * k3;
-
- for(int i = n; i >= 0; i--)
- {
- A[i] = p[0];
- B[i] = 1;
- _for(k, 1, K)
- {
- A[i] += A[i + k] * p[k];
- B[i] += B[i + k] * p[k];
- }
- }
- printf("%.10f\n", B[0] / (1 - A[0]));
-
- return 0;
- }
概率dp正推,期望dp逆推。这题先算概率,其实手推就可以发现是1+n/2了,因为每次期望增加是0.5。用概率dp的话,可以dp[i][j]表示i个黑球,j个白球的概率,然后由dp[i][j]更新dp[i+1][j]和dp[i][j + 1]即可。算出概率后枚举白球个数算期望,也可以得出答案就是1+n/2
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- int main()
- {
- int n; scanf("%d", &n);
- printf("%.7f\n", 1 + n * 0.5);
-
- return 0;
- }
同样倒推,用dp[i]表示以i为起点所能得到的期望,这样dp[n] = 1
然后枚举当前的分段即可,可以预处理加速。
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 1e5 + 10;
- int a[N], n, m, x, p[N], mx;
- double dp[N], s[N];
-
- int main()
- {
- scanf("%d%d", &n, &m);
- _for(i, 1, n) scanf("%d", &a[i]), mx = max(mx, a[i]);
- while(m--)
- {
- scanf("%d", &x);
- if(x < mx)
- {
- puts("YNOI is good OI!");
- continue;
- }
-
- int sum = 0, r = 0;
- _for(l, 1, n)
- {
- while(r + 1 <= n && sum + a[r + 1] <= x) r++, sum += a[r];
- p[l] = r;
- sum -= a[l];
- }
-
- s[n + 1] = s[n + 2] = 0;
- s[n] = dp[n] = 1;
- for(int i = n - 1; i >= 1; i--)
- {
- int l = i, r = p[i];
- dp[i] = 1 + 1.0 / (r - l + 1) * (s[l + 1] - s[r + 2]);
- s[i] = s[i + 1] + dp[i];
- }
- printf("%.2f\n", dp[1]);
- }
-
- return 0;
- }
手推一下,发现是一直除以2
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- typedef long long ll;
- const int mod = 1e9 + 7;
- ll w, n, k;
-
- ll binpow(ll a, ll b)
- {
- ll res = 1;
- for(; b; b >>= 1)
- {
- if(b & 1) res = res * a % mod;
- a = a * a % mod;
- }
- return res;
- }
-
- ll inv(ll x) { return binpow(x, mod - 2); }
-
- int main()
- {
- scanf("%lld%lld%lld", &w, &n, &k);
- printf("%lld\n", w * inv(binpow(2, k)) % mod);
-
- return 0;
- }
这题不算是期望dp,用期望的定义可知答案就是所有路径的长度之和除以所有路径条数
dp一下即可
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- typedef long long ll;
- const int N = 1e5 + 10;
- const int mod = 998244353;
- ll dp[N], cnt[N];
- vector<int> g[N];
- int d[N], n, m;
-
- ll binpow(ll a, ll b)
- {
- ll res = 1;
- for(; b; b >>= 1)
- {
- if(b & 1) res = res * a % mod;
- a = a * a % mod;
- }
- return res;
- }
-
- ll inv(ll x) { return binpow(x, mod - 2); }
-
- int main()
- {
- scanf("%d%d", &n, &m);
- while(m--)
- {
- int u, v;
- scanf("%d%d", &u, &v);
- g[u].push_back(v);
- d[v]++;
- }
-
- queue<int> q;
- _for(i, 1, n)
- {
- cnt[i] = 1;
- if(!d[i]) q.push(i);
- }
- while(!q.empty())
- {
- int u = q.front(); q.pop();
- for(int v: g[u])
- {
- cnt[v] = (cnt[v] + cnt[u]) % mod;
- dp[v] = (dp[v] + dp[u] + cnt[u]) % mod;
- if(--d[v] == 0) q.push(v);
- }
- }
-
- ll a = 0, b = 0;
- _for(i, 1, n)
- {
- a = (a + dp[i]) % mod;
- b = (b + cnt[i]) % mod;
- }
- printf("%lld\n", a * inv(b) % mod);
-
- return 0;
- }
计算每道题对答案的贡献即可
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 1e7 + 10;
- int a[N], n, A, B, C;
-
- int main()
- {
- scanf("%d%d%d%d%d", &n, &A, &B, &C, a + 1);
- for (int i = 2; i <= n; i++)
- a[i] = ((long long) a[i - 1] * A + B) % 100000001;
- for (int i = 1; i <= n; i++)
- a[i] = a[i] % C + 1;
-
- double ans = 0;
- _for(i, 1, n)
- {
- int j = (i == n) ? 1 : i + 1;
- ans += 1.0 * min(a[i], a[j]) / (1LL * a[i] * a[j]);
- }
- printf("%.3f\n", ans);
-
- return 0;
- }
dp[i]表示从已经出现i种面时,还需要扔色子的次数,dp[n] = 0, dp[0]即是答案
注意写方程时注意当前这次操作需要1次,不要漏写1
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 1e3 + 10;
- double dp[N];
- int n;
-
- int main()
- {
- int T; scanf("%d", &T);
- while(T--)
- {
- scanf("%d", &n);
- dp[n] = 0;
- for(int i = n - 1; i >= 0; i--)
- {
- double a = 1.0 * i / n;
- dp[i] = a / (1 - a) + 1 + dp[i + 1];
- }
- printf("%.2f\n", dp[0]);
- }
- return 0;
- }
这题直接暴力搜出所有的路径竟然不会T,能过
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- typedef long long ll;
- const int N = 1e5 + 10;
- vector<pair<int, int>> g[N];
- double dp[N], ans;
- int n, m;
-
- void dfs(int u, int fa, ll sum, double p)
- {
- if(u == n) ans += sum * p;
- for(auto x: g[u])
- {
- int v = x.first, w = x.second;
- if(v == fa) continue;
- dfs(v, u, sum + w, p / g[u].size());
- }
- }
-
- int main()
- {
- scanf("%d%d", &n, &m);
- while(m--)
- {
- int u, v, w;
- scanf("%d%d%d", &u, &v, &w);
- g[u].push_back({v, w});
- }
-
- dfs(1, 0, 0, 1);
- printf("%.2f\n", ans);
-
- return 0;
- }
当然,正解同样是逆推,用dp[u]表示从u到n的期望
- #include<bits/stdc++.h>
- #define rep(i, a, b) for(int i = (a); i < (b); i++)
- #define _for(i, a, b) for(int i = (a); i <= (b); i++)
- using namespace std;
-
- const int N = 1e5 + 10;
- vector<pair<int, int>> g[N];
- double dp[N], ans;
- int d[N], n, m;
-
- int main()
- {
- scanf("%d%d", &n, &m);
- while(m--)
- {
- int u, v, w;
- scanf("%d%d%d", &u, &v, &w);
- g[u].push_back({v, w});
- d[v]++;
- }
-
- queue<int> q;
- vector<int> topo;
- _for(i, 1, n)
- if(!d[i])
- q.push(i);
- while(!q.empty())
- {
- int u = q.front(); q.pop();
- topo.push_back(u);
- for(auto x: g[u])
- if(--d[x.first] == 0)
- q.push(x.first);
- }
-
- for(int i = topo.size() - 1; i >= 0; i--)
- {
- int u = topo[i];
- for(auto x: g[u])
- {
- int v = x.first, w = x.second;
- dp[u] += 1.0 / g[u].size() * (w + dp[v]);
- }
- }
- printf("%.2f\n", dp[1]);
-
- return 0;
- }